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Abstract. Infectious disease outbreaks can have a disruptive impact
on public health and societal processes. As decision-making in the
context of epidemic mitigation is multi-dimensional hence complex,
reinforcement learning in combination with complex epidemic mod-
els provides a methodology to design refined prevention strategies.
Current research focuses on optimizing policies with respect to a
single objective, such as the pathogen’s attack rate. However, as the
mitigation of epidemics involves distinct, and possibly conflicting,
criteria (i.a., mortality, morbidity, economic cost, well-being), a multi-
objective decision approach is warranted to obtain balanced policies.
To enhance future decision-making, we propose a deep multi-objective
reinforcement learning approach by building upon a state-of-the-art al-
gorithm called Pareto Conditioned Networks (PCN) to obtain a set of
solutions for distinct outcomes of the decision problem. We consider
different deconfinement strategies after the first Belgian lockdown
within the COVID-19 pandemic and aim to minimize both COVID-19
cases (i.e., infections and hospitalizations) and the societal burden
induced by the mitigation measures. We evaluate the solution set that
PCN returns, and observe that it explored the whole range of possible
social restrictions, leading to high-quality trade-offs, as it captured the
problem dynamics. In this work, we demonstrate that multi-objective
reinforcement learning adds value to epidemiological modeling and
provides essential insights to balance mitigation policies.

This work was published in the journal Expert systems with Ap-
plications and can be freely accessed via this link:https://doi.org/10.
1016/j.eswa.2024.123686.

1 Introduction

Infectious disease outbreaks represent a major challenge [7]. To this
end, understanding the complex dynamics that underlie these epi-
demics is essential. Epidemiological transmission models allow us to
capture and understand such dynamics and facilitate the study of pre-
vention strategies through simulation. However, developing efficient
mitigation strategies remains a challenging process, given the non-
linear and complex nature of epidemics. To address these challenges,
reinforcement learning provides a methodology to automatically learn
mitigation strategies in combination with complex epidemic mod-
els [6]. Previous research focused on optimizing policies with respect
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to a single objective, such as the pathogen’s attack rate, while the
mitigation of epidemics is a problem that inherently covers distinct
and possibly conflicting criteria (i.a., prevalence, mental health, cost).
Therefore, optimizing on a single objective requires that these dis-
tinct criteria are somehow aggregated into a single metric. Manually
designing such metrics is time-consuming, costly and error-prone,
as this non-intuitive process requires repetitive and tedious tuning to
achieve the desired behavior [9]. Moreover, taking a single objective
approach reduces the explainability of the learned solution, as we
cannot compare the learned behavior with alternatives [4].

This challenging process can be circumvented by taking an explic-
itly multi-objective approach that aims to learn the different trade-offs
regarding the considered criteria. By assuming that a decision maker
will always prefer solutions for which at least one objective improves,
it is possible to learn a set of optimal solutions referred to as the
Pareto front [4]. This enables decision makers to review each solution
on the Pareto front before making a decision, thereby being aware of
the trade-offs that each solution implies.

In this work, we investigate the use of multi-objective reinforcement
learning (MORL) to learn a set of solutions that approximate the
Pareto front of multi-objective epidemic mitigation strategies. We
consider the first wave of the Belgian COVID-19 epidemic, which was
mitigated by a strict lockdown [13]. When the incidence of confirmed
cases was steadily decreasing, epidemiological experts were tasked
to investigate deconfinement strategies, to reduce the severe social
contact and mobility restrictions.
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Figure 1: The Pareto front of policies discovered by PCN using MO-
BelCov, showing the different compromises between the number of
hospitalizations and the number of lost contacts, for set of budgets.
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2 Methods
Stochastic compartment model We consider an epidemiologi-
cal model that was constructed to describe the Belgian COVID-19
epidemic and was fitted to hospitalization incidence data and serial
sero-prevalence data [1]. This model concerns a discrete-time stochas-
tic model that considers an age-structured population. Based on this
model, we contribute a novel multi-objective epidemiological rein-
forcement learning environment (Multi-Objective Belgian COVID
environment, MOBelCov), in the form of a multi-objective Markov
decision process (MOMDP) [9].

Intervention strategies The social interactions of the different age-
groups are modeled with a social contact matrix C = Chome+Cwork+
Ctransport + Cschool + Cleisure + Cother, where 6 different social envi-
ronments are modeled explicitly [12]. To model different types of
non-pharmaceutical interventions, we consider a contact reduction
function that imposes a proportional reduction of work (including
transport) pw, school ps and leisure pl contacts Ĉ(pw, ps, pl) =
Chome + pw(Cwork + Ctransport) + psCschool + pl(Cleisure + Cother).
At each timestep (here one week), our RL agent will modulate
pw, ps, pl ∈ [0, 1] to control the spread of the epidemic.

Action budget In the context of mitigation policies, consistency is
important and policies that impose changes too frequently will be hard
to adhere to. As such, we introduce a budget regarding the number of
times a policy can change over the duration of the episode. To facilitate
this, we maintain a budget for each of the actions. Concretely, when
the action changes, i.e., if the social restriction proposed by the policy
is different from the one that is currently in place, we reduce the
budget for that action by one. We only allow action changes as long
as there is budget left.

Pareto Conditioned Networks (PCN) In multi-objective optimiza-
tion, the set of optimal policies can grow exponentially with the
number of objectives. Thus, recovering them all is a computationally
expensive process and requires an exhaustive exploration of the com-
plete state space. To address this problem, we extend PCN, a method
that uses a single neural network to encompass all non-dominated
policies [8] and designed for MOMDPs with discrete action-spaces to
the continuous action-space setting. With this continuous action vari-
ant of PCN, we explore the Pareto front of multi-objective COVID-19
mitigation policies. As PCN makes no assumptions about the shape of
the coverage set, it is particularly well suited for the complex decision
problem that we consider, for which the shape of the coverage set is
not known a priori.

3 Results
We learn a coverage set (see Fig. 1) that ranges from imposing mini-
mal restrictions to enforcing many restrictions. As a comparison, we
execute a baseline which consists of a set of 100 fixed policies, that
iterate over all the possible social restriction levels. Regardless of
the imposed budget, we notice that the coverage sets discovered by
PCN almost completely dominate the coverage set of the baseline,
demonstrating that there are better alternatives to the fixed policies.
This is most evident in the compromising policies, where one has
to carefully choose when to remove social restrictions while at the
same time minimizing the impact on daily new hospitalizations. In
these scenarios, PCN learns policies that drastically reduce the total
number of new hospitalizations (e.g., more than 20000) for the same
social burden. Moreover, we observe that the difference is concen-
trated around the less restrictive policies in terms of social burden. We

postulate that this region contains the most complex policies, as these
try to maintain as much social freedom as possible, while containing
the number of hospitalisations (see Fig. 2).
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Figure 2: Execution of the policies attaining a number of hospitali-
sations around 80000, for different budgets. From top to bottom we
display the policy executions with budget 2,3,4,5 and no-limit, respec-
tively.

4 Conclusion

Making decisions on how to maintain epidemic situations has impor-
tant ethical implications with respect to public health and societal bur-
den. In this regard, it is crucial to approach this decision making from
a balanced perspective, to which end we argue that multi-objective
decision making is essential. In this work, we establish a novel ap-
proach, i.e., an expert system, to study multi-faceted policies, and this
approach shows great potential to study future epidemic mitigation
policies. Moreover, the methodology that we propose shows promise
to address a wide variety of public health challenges, such as balanc-
ing the number of lost schooldays with respect to the attack rate of
infections in schools [11], the efficacy versus burden of face masks
for children [3], contact tracing effort compared to the impact of such
policies [13], the impact of antivirals on the epidemic while balancing
the likelihood for resistance mutations to emerge [10], to balance the
efforts and insights of COVID-19 genomic surveillance [2], and to
balance the cost of universal testing and its impact on an emerging
epidemic [5]. We show that multi-objective reinforcement learning
provides decision maker with insightful and diverse alternatives on
real-world problems. PCN automatically learns all Pareto-efficient
trade-offs. It explored the whole range of possible social restrictions,
which led to many alternative trade-offs between these extreme poli-
cies. Furthermore, we show that action budgets can act as a regulariser
that facilitates learning realistic policies that can be easily conveyed to
decision makers. Finally, we notice an inflection point on the right-side
of the Pareto front, indicating that taking extreme measures (which
can be computed manually) may not be necessary to root out the
infection while minimizing the number of hospitalisations.
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