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Abstract. Reinforcement learning (RL) is becoming more preva-
lent in practical domains with human implications, raising ethical
questions. Specifically, multi-objective RL has been argued to be an
ideal framework for modeling real-world problems and developing
human-aligned artificial intelligence. However, the ethical dimension
remains underexplored in the field and no survey covers this aspect.
Hence, we propose a review of multi-objective RL from an ethical
perspective, highlighting existing works, gaps in the literature, im-
portant considerations, and potential areas for future research.

1 Introduction

The field of reinforcement learning (RL) has recently seen numerous
breakthroughs, notably featuring artificial intelligence (AI) agents
beating humans at a wide variety of games [50, 10, 8]. RL has also
been applied to multiple real-world problems, with a potentially large
impact on societies, e.g., language model alignment [36], nuclear fu-
sion control [16], healthcare [70]. This calls for the study of the ethi-
cal issues that may arise from such uses, and the development of tech-
niques to ensure that the agents have a behavior deemed ethically-
aligned with human principles; so as to guarantee this technology
will be beneficial to humanity. This is a complex endeavor, and a few
works have started paving the way [67, 52].

In this paper, we focus on multi-objective reinforcement learning
(MORL), a sub-field of RL in which multiple potentially conflicting
goals are considered rather than a single one. Following the RL trend,
MORL is being increasingly used in real-world applications such as
public bicycle dispatching [14] or energy management [19]. It has
been argued that aligning AI with human goals is a multi-objective
problem [60], making the study of MORL interesting in this regard.
While a few multi-objective decision making surveys have been pub-
lished [24, 47], they focus on the theory and applications of multi-
objective decision making algorithms, and the machine ethics aspect
has rarely been considered. The goal of this work is to highlight the
need for ethically-aligned multi-objective methods and to conduct an
analysis of MORL from a moral standpoint. To do so, we start by
discussing and categorizing existing MORL methods, before intro-
ducing important ethical considerations which we use to emphasize
important gaps in the literature.

∗ Corresponding Author. Email: timon.deschamps@univ-lyon1.fr.

2 A motivating example
To illustrate the ethical concerns that can arise when AI agents are
deployed in the real-world, we propose to study the case of self-
driving vehicles. This sector has been increasingly interested in RL
[27], which is viewed as a suitable paradigm: vehicles can be rep-
resented by agents taking actions such as steering and accelerating
within an environment (road network). RL agents typically optimize
for a single objective, e.g., speed. However, when dealing with com-
plex use-cases or when humans can be impacted, more flexibility is
desirable to account for additional goals like cost saving and comfort.

MORL is ideal in such contexts, as it allows for representing and
compromising between multiple objectives. This multi-objective as-
pect is essential when autonomous vehicles are deployed on real
roads, as human error, technical malfunctions or unexpected situa-
tions will inevitably occur, leading the machine to have to handle
complex ethical dilemmas which require weighting between con-
flicting moral values, e.g., ensuring safety for both passengers and
surrounding pedestrians in an inevitable accident scenario.

This example motivates the study of MORL agents with an
ethically-aligned behavior, and we will extend it throughout this pa-
per to illustrate some of the notions discussed.

3 Background
3.1 Multi-objective reinforcement learning

Reinforcement learning is a general framework to solve problems in
which an agent alternatively takes actions and receives observations
and scalar rewards from an environment, and aims at maximizing the
cumulative reward obtained (also called return). The goal is to find a
policy π ∈ Π which is optimal (denoted π∗), i.e., which maximizes
the return in every state. In multi-objective RL, the rewards rt ∈
Rm are vector-valued, with one component for each objective. In
this setting, we cannot find a single optimal policy, as maximizing
one of the component of the reward vector could lead to a decrease
in another one.

Utility functions (u : Rm → R), also referred to as scalariza-
tion functions, are used to simplify a reward vector down to a single
scalar. They provide a convenient way to formalize preferences and
trade-offs over the objectives. A common and simple class of utility
functions are linear utilities, denoted as u(r) = w⊤r, which com-
bines a weight vector w in the (m−1)-simplex1 and a reward vector

1 The k-simplex ∆k = {w ∈ Rk+1 |
∑k+1

i=1 wi = 1, ∀i wi ≥ 0}.



using a linear combination. Intuitively, each weight wo ∈ w repre-
sents the importance of the associated objective o ∈ {1 . . .m}.

If we have access to a linear utility function for the user, we can use
it to simplify the problem back into the single-objective RL setting
and solve it with classic methods. However, this is not an option when
the utility function is not fully known in advance or is non-linear,
which represents a large segment of real-world scenarios (see the
motivating scenarios presented in [24]).

In the latter setting, we focus on a set of optimal policies: the
Pareto front (PF). A policy belongs to the Pareto front PF(Π) if it
is not Pareto-dominated by any other policy. The Pareto-dominance
of a policy π over a policy π′ is defined as:

π ≻P π′ := (∀o : Vπ
o ≥ Vπ′

o ) ∧ (∃o : Vπ
o > Vπ′

o ), (1)

with Vπ the value function associated with policy π, i.e., the ex-
pected vector-valued return obtained when following π starting from
a distribution of initial states. In plain words, π’s associated value
function is greater or equal to the one associated with π′ for all ob-
jectives o, and strictly greater for at least one.

As the Pareto front can have multiple policies with the same in-
duced value function, we often refer to a Pareto coverage set (PCS),
which simply retains a single policy for each non Pareto-dominated
value function. Computing a PCS guarantees that we have access
to all policies that are optimal under some monotonically increas-
ing utility function. This allows to adapt to changes in the user’s
preferences while making minimal assumptions about u. In practice,
however, both the Pareto front and Pareto coverage sets can be pro-
hibitively large to compute. Recent works [47, 24, 40] have argued
for a utility-based approach, in which we use a priori information
about the utility function to guide the search in the space of policies.
For example, when u is known to be linear, Roijers et al. [46] pro-
pose to solve for convex coverage sets (CCS): subsets of the Pareto
front containing all maximal policies under this assumption.

To illustrate these concepts, let’s take our example from section
2. Keeping only 2 objectives (speed and comfort) for ease of repre-
sentation, we can visualize the Pareto font and a convex coverage set
in figure 1. Each point represents a policy and its associated value,
compromising between the two objectives. We can see that increas-
ing speed usually leads to a decrease in comfort, but it is not al-
ways the case (for instance, faster speeds on very uneven roads could
smooth out the cruise). Notice that points belonging to the repre-
sented convex coverage set are also part of the Pareto front (in fact
CCS(Π) ⊆ PF(Π)). Here, point b is not Pareto-dominated (see eq. 1)
by either point a or c (nor by any other point). Furthermore, there is
no w for which a linear scalarization would lead to b being maximal
(see [56]). Thus, we can conclude that b belongs to the Pareto front
but not to a convex coverage set.

When using a scalarization function, two optimization criteria
naturally arise [47]: scalarized expected returns (SER) and ex-
pected scalarized returns (ESR). An optimal policy under SER
maximizes the scalarization of the expected reward vector, i.e.,
π∗
SER = argmaxπ u

(
E[
∑∞

t=0 γ
trt | π]

)
. On the other hand, op-

timizing for ESR requires having a scalarized return for each
run, and then computing an expectation over them, i.e., π∗

SER =
argmaxπ E

[
u(
∑∞

t=0 γ
trt) | π

]
. These two criteria have different

properties and are used in different scenarios. SER, the most studied
one, is particularly suited when we aim to optimize over many policy
executions, whereas using the ESR criterion is better to ensure that
each execution is maximal over our utility function.

See [47, 24] for a detailed overview of the theory and methods of
multi-objective reinforcement learning.
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Figure 1. Visualization of the Pareto front and a convex coverage set for a
2-objective self-driving car example.

3.2 Machine ethics

As autonomous machines are increasingly integrated into domains
with significant human implications, their impact, whether it be pos-
itive or negative, requires investigation. Machine ethics is concerned
with ensuring that AI agents demonstrate ethically-aligned behav-
iors, i.e., behaviors whose outcomes are acceptable according to
some human-chosen ethical framework [6]. In turn, the aim is for
them to be explicit ethical agents [32], i.e., agents who are not sim-
ply constrained to avoid unethical behaviors but who integrate al-
gorithmic capabilities [18] allowing them to perform ethics-related
computations and to take into account ethical considerations in their
decision-making process. To evaluate the ethical alignment of these
behaviors, we leverage insights from normative ethics. As it is con-
cerned with the morality of actions, this field provides a suitable
framework for such an analysis.

Normative ethics encompasses three main schools of thought: con-
sequentialism, virtue ethics and deontology. According to conse-
quentialism, only the outcomes of actions are necessary to judge
whether these actions are ethical or not. Consequentialist ethics are
most known for utilitarianism, which argues that in every situation,
the ethical action is the one that maximizes happiness and well-being
for all. Virtue ethics shift the focus from the action to its motiva-
tion. In this view, an agent is ethical if it acts according to set values
(e.g., confidence, honour, freedom). Deontology takes a rule-based
approach, in which actions can either be right or wrong according
to a list of principles. Kantian ethics is a prime example of deonto-
logical ethical theories. We refer the interested reader to [54] for an
extensive review of western moral philosophy.

A defining feature of reinforcement learning agents is their ability
to take actions in an environment, making normative ethics a natu-
ral framework for studying the ethical alignment of their behavior.
In fact, reinforcement learning has been characterized as an ideal
framework to develop ethical agents [1] and recent work has sur-
veyed RL-based moral learning agents [52]. Furthermore, we argue
that the formulation of the reinforcement learning objective as the
maximization of a future reward signal naturally aligns with a num-
ber of branches of consequentialism. Although some methods allow
for the application of deontological ethics into RL [23, 5], none to
our knowledge directly takes a moral perspective and is adapted to
the multi-objective setting. Finally, it has been argued that MORL,
on top of being ideal to model a number of real-world problems [24],
is a particularly fitting framework to develop human-aligned artificial
intelligence [60]. Moreover, we suggest that it is also suited for mod-
eling virtue ethics, as each component of the vector-valued reward



can encode a virtue to be followed. For a comprehensive overview
of machine ethics implementations, refer to the survey of Tolmeijer
et al. [55], which offers a well-organized taxonomy and an extensive
bibliography.

4 Classic MORL methods
The most commonly used taxonomy for multi-objective sequential
decision making [47, 24] classifies methods according to the follow-
ing criteria:

• single vs. multiple policies: As mentioned in sec. 3.1, algorithms
can either output a single solution (if the utility is fixed and known
in advance) or a set of optimal policies. Multi-policy methods
are more costly, but allow for greater flexibility: since fewer as-
sumptions are made on the utility function, the user can adapt in
the face of new data or changing contexts.

• deterministic vs. stochastic policies: While it was shown that
stochastic policies can outperform deterministic ones in some
environments [64, 57], their use can become ethically question-
able or impossible in domains requiring strong guarantees (e.g.,
medical treatments).

• linear vs. monotonically increasing u: Using linear utility func-
tions simplifies the learning process, allowing the MORL prob-
lem to be reduced to a single-objective one (for single-policy algo-
rithms) or to restrict the policy search to a convex coverage set (for
multi-policy algorithms). Using monotonically increasing utility
functions enables the expression of a much richer relationship
between the objectives, at the cost of a more complex learning
process, as the entire Pareto front has to be considered.

For each combination of criteria, this taxonomy allows us to define
a solution set, i.e., the type of policies that will constitute a solution
to our given problem. In table 1, we categorize a non-exhaustive list
of popular MORL methods according to said taxonomy. In this sec-
tion, we present each class of solution set alongside its corresponding
methods.

4.1 Linear scalarization

When the utility function is linear, Roijers et al. [47] show that deter-
ministic stationary2 policies are optimal. Furthermore, adding non-
stationarity and stochasticity greatly increases the size of the policy
space. Thus, MORL methods developped for linear utility functions
tend to limit their search to deterministic stationary policies. In sce-
narios where u is known, only a single optimal policy is required.
Conversely, when the utility is unknown or may change, we seek to
retrieve a convex coverage set.

Note that by definition, the SER and ESR optimization criteria are
equivalent under linear utility, and as such no distinction is made
between them in this section.

4.1.1 One deterministic stationary policy

When a linear utility function is used, any single policy MORL prob-
lem can be cast into single-objective RL by scalarizing the reward
vector. This setting can be solved with most of the existing RL meth-
ods (e.g., value-based methods, policy gradients).

For example, take the autonomous driving example discussed in
section 2. Let’s assume our user is budget-conscious, not in a hurry,

2 A policy π is stationary if the distribution of actions is constant in all states,
i.e., it is not conditional on time step-dependent information.

and has recurrent back pain. They might then decide on a prefer-
ence (weight) vector of [0.1, 0.5, 0.4], meaning that they assign an
importance factor of 0.1 to speed, 0.5 to cost saving, and 0.4 to com-
fort. When driving towards a speed bump, the car can either brake
or accelerate. The brake option yields a reward of [−0.4, 0.4, 2.1]
which gets scalarized to 0.1 · −0.4 + 0.5 · 0.4 + 0.4 · 2.1 = 1.
Accelerating gives [5,−0.2,−1], resulting in a scalarized reward of
u([5,−0.2,−1]) = 0. This indicates that braking is to be favored in
this context. When the agent receives a reward vector from the en-
vironment, single-objective RL methods like REINFORCE [51] or
DQN [31] can scalarize it as such before using the resulting value as
their reward input.

4.1.2 CCS of deterministic stationary policies

As mentioned in section 3.1, using a linear utility function implies
that all optimal policies lie on a convex coverage set. This means
that a multi-policy algorithm able to recover a convex coverage set
has access to an optimal policy for any possible weight vector w.

Most algorithms use some form of neural network conditioned on
a weight vector in their architecture and train it with random values,
allowing the model to produce robust outputs over any input w. Con-
ditioned Networks (CN) [2] popularized this approach by showing
the potential of conditioned deep Q-networks to generalize across
the weight space. Following work kept the same general structure,
while focusing on efficient exploration and alignment of weight vec-
tors. The authors of Envelope [69] propose to use multiple schemes
such as homotopy optimization and Hindsight Experience Replay [7]
and show that it allows them to consistently outperform CN. PG-
MORL [68] was one of the first methods to tackle environments with
large continuous action spaces. It features an evolutionary stage that
allows it to efficiently search the space of policies and weights to
best improve the current approximation of the convex coverage set.
PD-MORL [9] was able to beat Envelope and PG-MORL (on dis-
crete and continuous action tasks respectively) by adding a prefer-
ence guidance term to a double deep Q-network loss [62]. Note that
some of these works use the terms Pareto coverage sets and convex
coverage sets interchangeably, but their nature in fact strictly limit
them to the retrieval of a CCS.

4.2 Monotically increasing scalarization

When the utility function is non-linear, deterministic stationary
policies are not guaranteed to be optimal. To retrieve policies from
the Pareto front that do not lie on convex coverage sets, we need to
introduce either non-stationarity or stochasticity.

Note that in this context of non-linear scalarization functions, the
ESR and SER optimization criteria are distinct. Although not explic-
itly mentioned here, each method presented in this section optimizes
for one of them.

4.2.1 Deterministic non-stationary policies

When the solution policies must be deterministic and the utility
function is non-linear, White shows that non-stationary policies can
dominate stationary ones [66]. Consequently, non-stationary policies
must be considered to retrieve a Pareto coverage set in this context.

Imagine an autonomous delivery company working for two large
clients A and B. Its goal is to distribute as many items as possible,
while avoiding to neglect either A or B as not to lose an important
partnership. An autonomous truck receives a reward of [1, 0] when



Table 1. Non-exhaustive classification of MORL algorithms, following the common utility-based taxonomy from [47, 24]. Here, ΠD and ΠDS denote the
policy space restricted to deterministic and deterministic stationary policies, respectively.

single policy (known u) multiple policies (unknown u)

deterministic stochastic deterministic stochastic

linear
scalarization

one policy in ΠDS: DQN [31], REINFORCE [51] convex coverage set of policies in ΠDS: Envelope [69], PG-MORL [68],
PD-MORL [9], CN [2]

monotonically
increasing

scalarization

one policy in ΠD: EUPG [45],
MOCAC [42], Q-steering [59]

mixture of policies in ΠDS: π-mix
[57], S-rand [64]

Pareto coverage set of policies in
ΠD: PQL [63], PCN [41]

mixture of policies in ΠDS:
CAPQL [28], π-mix [57], S-rand
[64]

customer A gets a successful delivery, and [0, 1] for customer B. The
utility function to use could then be u(Vπ) = min(V π

A , V π
B ), effec-

tively maximizing the total number of deliveries while ensuring no
client is left out. Here, a deterministic non-stationary policy would be
able to yield a satisfying utility while a stationary one would not. In-
deed, instead of always acting the same in each state — which would
be equivalent to always picking the same client and thus yielding a
utility of 0 — the non-stationary policy could condition on the time-
dependent past rewards. This allows the agent to make informed de-
cisions about actions to take depending on whether A or B was most
chosen until now.

The first and third cells in the second row of table 1 respectively
represent the single and multi-policy solution sets for deterministic
non-stationary policies. Constructing such policies is often done by
conditioning them on the current timestep t (EUPG [45], PCN[41])3,
or by splitting the return into a past (also known as accrued) and fu-
ture component (PQL [63], EUPG [45], MO-CAC [42]). For exam-
ple, the EUPG algorithm employs a modified policy gradient loss in-
cluding both accrued rewards and a t-conditioned policy. Q-steering
[59] takes another approach, forming non-stationary combinations
of deterministic stationary base policies. Q-steering is based on Q-
learning, and as such is limited to discrete state and action spaces.

4.2.2 Deterministic stationary mixture policies

As previously mentioned, there are contexts in which having a pre-
dictable, deterministic policy is essential. Conversely, other applica-
tions can tolerate some degree of stochasticity. For example, when
designing a fleet of autonomous cars, we might want to add random-
ness to the path-finding algorithm, such that not all agents converge
to the same road, thus avoiding congested traffic and globally sub-
optimal behaviors. When allowed, stochastic policies should be con-
sidered as part of the solution, as they can dominate deterministic
policies under non-linear utility function [47]. It was shown that in
some cases, we can construct a Pareto front from a mixture (i.e., a
stochastic combination) of deterministic stationary policies [57, 64].
This is ideal, as it means that recovering a convex coverage set is
sufficient to construct the entire Pareto front, greatly reducing the
amount of computation needed to find optimal policies.

For example, Vamplew et al. [57] introduce a new algorithm,
which we refer to as π-mix, that randomly selects a deterministic pol-
icy at the start of each episode and for its entire duration. Although
this method works as expected under SER, using one deterministic
policy per episode is not suitable for learning under ESR. Following
our autonomous delivery example from section 4.2.1, π-mix could
learn to alternate between two policies, each favoring only client A
or B. In expectation over multiple episodes, this would indeed result

3 Pareto Conditioned Networks can be seen as a sort of deterministic non-
stationary policy method, as the agent follows a policy trained using super-
vised learning that conditions on the “desired horizon”.

in a fair delivery between them. However, on a per-episode basis, one
customer would not be supplied, and thus could end the contract.

The ESR case is more complex, as the choice of policy needs
to happen at each state (instead of each episode), being effectively
equivalent to a stochastic policy. Wakuta [64] introduces a such
method in a simplified setting, which we designate as S-rand, where
the probability of picking one of k policy is the same at each state.

However, Lu et al. [28] show that finding the correct weights of
a stochastic policy to retrieve a specific value vector is in practice
infeasible. They propose CAPQL which uses reward augmentation to
recover otherwise unreachable value functions from the Pareto front,
although the resulting policies are not stochastic.

4.3 Challenges and way forward

As seen throughout this section, the field of multi-objective rein-
forcement learning, despite its growing popularity, remains sparse
and fragmented. The recent work of Hayes et al. [24] identifies a few
understudied areas of MORL that require further exploration: com-
plex multi-objective benchmarks, dedicated many-objectives meth-
ods, specificities of multi-agent settings and the dynamical identi-
fication and evolution of objectives.

In particular, the study of many-objectives methods seems like an
important future research area for MORL. Indeed, most MORL al-
gorithms suffer from the curse of dimensionality, i.e., the exponen-
tial growth of the search space in the number of objectives makes
retrieving satisfying policies highly complex. Note that the lack of
MORL benchmarks has been partly addressed since the survey. No-
tably, the widely-used RL library Gymnasium was extended to the
multi-objective case with MO-Gymnasium [21].

5 MORL and ethics
While it is important to take into account the normative ethics consid-
erations mentioned in section 3.2, deploying MORL agents in soci-
ety introduces additional concerns. Drawing from the machine ethics
literature and considering potential issues caused by the use of naive
MORL algorithms in real-world scenarios, we identify four desirable
features associated with ethical MORL agents.

They should have the ability to: (a) prioritize user experience, (b)
adapt to an evolving society, (c) adhere to a set of norms, and (d)
account for other agents. Interestingly, the evolution of objectives
and the multi-agent aspect are part of the list of open challenges for
MORL research mentioned in section 4.3. Note that these properties
are pointers for researchers wanting to consider the impact of their
algorithms, and not an exhaustive list of required attributes to develop
agents with ethically-aligned behaviors. These features can even be
contradictory in some cases, e.g., when a user’s preferences (which
we want to be aligned with in order to better the user experience) are
incompatible with the set of norms the agent ought to follow.



In this section, we define and motivate each of the aforementioned
properties, using examples and references from the literature. We
also review their place in the MORL literature, highlight potential fu-
ture work. Finally, we conclude by discussing ways of benchmarking
ethics in a MORL settings. A summarizing classification of existing
methods according to our four principles is presented in table 2.

5.1 The user-centric approach

User-centric methods bring an explicit consideration of the user
alongside the traditional performance goals. These approaches aim
to empower users with agency, helping them make informed deci-
sions while minimizing their cognitive load. Algorithms mentioned
in section 4 are capable of producing one policy (or a set of policies)
that efficiently solves the input problem. However, most of them do
not tackle how to find what utility function to use or which policy to
pick from the Pareto front. Consequently, the end-user is tasked with
making these decisions which can be non-trivial, especially when the
Pareto Front is not easily visualizable (m > 3). Etzioni and Etzioni
[20] advocate for the ethics bot, an AI program that “extracts specific
ethical preferences from a user and subsequently applies these pref-
erences to the operations of the user’s machine”. This resonates with
the example discussed in section 4.1.1 in which we want the agent
to learn the passenger’s preferences (e.g., prioritize speed if they are
in a hurry or low costs if they want to save up) and adapt its driving
profile accordingly. Zintgraf et al. [72] noticed this gap in the litera-
ture and made a first step to address it by proposing and evaluating
several preference elicitation strategies. Following this work, a num-
ber of papers have focused on making the human decision maker a
bigger part of the MORL process.

With GUTS [48], Roijers et al. introduce an interactive approach
for multi-armed bandits, where the agent learns simultaneously about
the environment and the user’s preferences. Contrary to previous
methods, GUTS is able to learn non-linear utility functions, while
querying the user a provably limited number of times. MORAL [39]
proposes a two-step method for aligning an agent’s behavior with the
preferences of a user. First, a set of reward functions is learned from
expert demonstrations using adversarial inverse reinforcement learn-
ing [22]. The user is then faced with multiple queries, allowing the
agent to find a preference vector between expert reward functions,
while simultaneously optimizing a policy on this combination. Em-
pirically, the authors show that an adversarial user would not be able
to teach the agent behaviors actively avoided by the expert demon-
strations, although no formal proof is given. DWPI [29] learns the
user’s preference vector from demonstrations of their behavior in the
environment (in a way reminiscent of inverse RL [71]). Chaput et
al. [13] argue for a more contextual and intelligible approach, and
propose QSOM-MORL, which learns to identify and solve ethical
dilemmas using contextual human preferences.

Although not discussed in this work, it is important to consider
potential biases in the construction of the utility function when de-
veloping single-policy user-centric algorithms. For example, some
work (notably in the economics literature) show that there can be a
gap between observed and ground truth preferences [11]. As MORL
algorithms get better, this discrepancy may become a bottleneck in
user satisfaction, further emphasizing the need to take these factors
into account.

5.2 Evolving values and preferences

The methods for learning a user’s preferences or utility function in-
troduced in the previous section assume that the target is fixed and
not subject to change. However, the owner of a self-driving vehi-
cle, may suddenly change their habitual preferences in the case of
an emergency. Similarly, the vehicle could be part of an autonomous
taxi fleet, having to adapt to each customer profile. Therefore, it can
be desirable for autonomous agents to have the ability to detect and
adapt to user preference changes. A few MORL methods have
been developed to tackle this problem. CN [2] and DMCRL [35] take
similar approaches, using prior information from learned policies to
adapt to changing preferences. Q-steering [59] includes an interac-
tive mode, allowing the user to update the target during or after the
learning phase.

As society evolves, the three values proposed in our example of
section 2 could fail to address emerging considerations such as envi-
ronmental impact. Pavaloiu and Koose [38] emphasize that morality
is subjective, varies across cultures, and continuously evolves. Sim-
ilarly, [34] mentions the ability to adjust to changing social mores
as one of the axis for the analysis of machine-implemented ethics.
Thus, we may want our agent to adapt to newly introduced objec-
tives while retaining previously learned knowledge. One naive way
to approach this aspect could be to use a linear scalarization func-
tion, and take advantages of methods which support non-stationary
reward functions (e.g., continual RL [26], Q(D)SOM [12]). Hayes et
al. [24] identify the challenge of dynamic identification and addition
of objectives as one of the main areas for future work in MORL, and
to our knowledge the formulation of a variable sized vector-valued
reward function has not been studied yet.

5.3 Lawful agents

Approaches for the ethical alignment of agents behavior can be cate-
gorized into 3 classes [4]:

• Bottom-up approaches do not enforce any obligatory or prohib-
ited actions. Instead, the ethical behavior is learned through expe-
rience, and emerges from the definition of the agent and environ-
ment.

• Top-down approaches are rule-based, and incorporate a priori
knowledge (such as deontological duties).

• Some works [52, 17] argue for hybrid methods which combine the
top-down and bottom-up approaches.

When discussing their ethics bots, Etzioni and Etzioni [20] men-
tion that they only address moral preferences, and disregard norma-
tive aspects (e.g., a legal framework). Thus, a MORL-based imple-
mentation of an ethics bot would only learn in a bottom-up fashion.
Although some works [65, 53] argues that top-down approaches are
challenging and pose some risks, having a set of guarantees (via top-
down or hybrid agents) can be crucial in some applications. Typi-
cally, we want to ensure that self-driving vehicles act according to
the locally enforced traffic regulations, so that their behavior is safe
and predictable for human drivers. In fact, Pagallo [37] argues that
values alone are not enough for the coordination of AI agents and
that rules are needed. Thus, it is desirable for our agents to be able
to follow a set of norms.

In MORL, Rodriguez-Soto et al. [44] take the perspective of the
environment designer, allowing them to derive theoretical guarantees
for the alignment of agents w.r.t. chosen ethical values. To do so, they
start from a MOMDP whose reward functions are built upon a value



Table 2. Qualification of MORL methods with regards to ethical properties.

MORL methods user-centered adaptable normative multi-agent
CN [2], DMCRL [35], Q-steering [59] ✓ ✓

MAEE [43] ✓ ✓

GUTS [48], MORAL [39], DWPI [29], QSOM-MORL [13] ✓

EE [44], TLO [61] ✓

MO-MIX [25], PRBS/D [30], moral rewards [53] ✓

system. Their proposed Multi-Valued Ethical Embedding (EE) algo-
rithm then proceeds to compute a solution weight vector, resulting in
a linearly scalarized MDP with the desired properties.

Using potential-based rewards, TLO [61] focuses on impact-
minimizing agents, i.e., agents performing a primary task while aim-
ing at disrupting the environment as little as possible. This approach
is bottom-up by design, yet the authors demonstrate strong empirical
results showing the ethical alignment of trained agents. These results
are for now limited to discrete states and actions, although the algo-
rithms proposed are theoretically extensible to the continuous cases.

For single-objective RL, a few works propose top-down or hy-
brid approaches. Shielding [5] uses temporal logic to enforce a set
of properties on the resulting policy. AJAR [3] uses argumentation-
based judges to compute the rewards based on a set of moral values.
Extending such methods to the multi-objective case presents promis-
ing possibilities for future research.

5.4 Ethics as a multi-agent problem

Murukannaiah et al. [33] argue that the study of ethics intrinsi-
cally needs to be done in a multi-agent context, highlighting that re-
search in AI ethics is to this day largely constituted of single-agent
works and ignores the societal context. As trained MORL algorithms
are deployed in real-world situations, they are likely to encounter
other actors, both artificial and human. Therefore, we argue that our
agents should be able to account for and interact with other ac-
tors. The field of multi-objective multi-agent reinforcement learn-
ing (MOMARL) accounts by design for the interactions that can
emerge in these cases. Being at the intersection of two sub-fields,
MOMARL remains relatively understudied. Rădulescu et al. [40]
have surveyed the field of multi-objective multi-agent decision mak-
ing and concluded that many gaps still exist in the literature, particu-
larly for RL-based methods. Although some MOMARL approaches
have been proposed [25, 30], and there has been work on ethics in the
multi-agent setting [15], very few MOMARL papers specifically take
an ethical perspective. Rodriguez-Soto et al. [43] propose a method
(MAEE) to construct environments in which agents are guaranteed
to have an ethically-aligned behavior, while pursuing their individ-
ual goals. However, the multi-objective reward function they use is
very simple, with only two components: an individual objective and
an ethical objective (itself split between a normative and evaluative
part). QSOM and QDSOM [12] are multi-agent algorithms based on
self-organizing maps. Although not multi-objective, they were tested
with a variety of reward functions combining ethical stakes, in a way
analogous to ESR-optimized MORL. Tennant et al. [53] analyze the
behavior of intrinsically-motivated RL agents rewarded according to
moral theories when faced with moral dilemmas.

5.5 Benchmarking ethics

While some papers tackle the evaluation of MORL algorithms and
the available benchmarks [58], few environments have become stan-

dard, and most of them are too simple for modern methods [24].
When trying to ensure the ethical alignment of an AI agent’s be-

havior, the metric of success may be more complex than a simple
sum of reward signals. Few MORL environments with an ethics-
first approach have been proposed. The ethical gathering game by
Rodriguez-Soto et al. [43] extends the regular gathering game, with
the addition of beneficence as a moral value. Scheirlinck et al. [49]
introduce the ethical smart grid, a complex environment with con-
tinuous actions and observations. They propose to use a number of
(sometimes conflicting) moral values from the literature to evaluate
the behavior of agents.

Additionally, many environments are not created with ethics in
mind but allow for the inclusion of one or more of the constraints pre-
viously mentioned. As such, MORL environments (e.g., DST [56])
can be viewed through a user-centric lens by changing the setting
or adding queries to a user to learn their preferences. Similarly, we
can modify multi-agent multi-objective environments (e.g., MOBDP
[30]) to shift the focus towards the alignment of agents with some
specified ethical values.

6 Conclusion
As artificial intelligence agents are being increasingly deployed in
society, there is a growing need to study ways of ensuring the ethi-
cal alignment of their behaviors. In this paper, we have focused on
multi-objective reinforcement learning, a framework that has been
deemed ideal for modeling the complexities of both ethics and real-
world problems. First, we proposed a classification of existing multi-
objective RL methods according to the prevalent taxonomy. Then,
we explored the considerations required when one wishes to work
in MORL while adopting an ethics-centered perspective. The liter-
ature at the intersection of MORL and ethics is still very limited,
and a lot of work remains to be done, notably on methods explic-
itly implementing one or more of the four desirable properties for
ethical agents highlighted in section 5: user-centeredness, adaptabil-
ity to societal changes, compliance with norms and regulations, and
considerations of other agents. We hope that this work can serve re-
searchers at the intersection of MORL and ethics to visualize the state
of current research and the still lacking areas deserving of further in-
vestigations.
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[24] C. F. Hayes, R. Rădulescu, E. Bargiacchi, J. Källström, M. Macfarlane,
M. Reymond, T. Verstraeten, L. M. Zintgraf, R. Dazeley, F. Heintz, et al.
A practical guide to multi-objective reinforcement learning and plan-
ning. Autonomous Agents and Multi-Agent Systems, 36(1):26, 2022.

[25] T. Hu, B. Luo, C. Yang, and T. Huang. Mo-mix: Multi-objective multi-
agent cooperative decision-making with deep reinforcement learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

[26] K. Khetarpal, M. Riemer, I. Rish, and D. Precup. Towards continual
reinforcement learning: A review and perspectives. Journal of Artificial
Intelligence Research, 75:1401–1476, 2022.

[27] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez. Deep reinforcement learning for autonomous
driving: A survey. IEEE Transactions on Intelligent Transportation Sys-
tems, 2021.

[28] H. Lu, D. Herman, and Y. Yu. Multi-objective reinforcement learning:
Convexity, stationarity and pareto optimality. In The Eleventh Interna-
tional Conference on Learning Representations, 2022.

[29] J. Lu, P. Mannion, and K. Mason. Inferring Preferences from
Demonstrations in Multi-objective Reinforcement Learning: A Dy-
namic Weight-based Approach. In Adaptive and Learning Agents Work-
shop at Autonomous Agents and Multi-Agent Systems, 2023.

[30] P. Mannion, S. Devlin, J. Duggan, and E. Howley. Reward shaping
for knowledge-based multi-objective multi-agent reinforcement learn-
ing. The Knowledge Engineering Review, 2018.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning.
Advances in neural information processing systems, 2013.

[32] J. H. Moor. The nature, importance, and difficulty of machine ethics.
IEEE intelligent systems, 2006.

[33] P. K. Murukannaiah, N. Ajmeri, C. M. Jonker, and M. P. Singh. New
foundations of ethical multiagent systems. In Proceedings of the 19th
Conference on Autonomous Agents and MultiAgent Systems, 2020.

[34] V. Nallur. Landscape of machine implemented ethics. Science and
engineering ethics, 2020.

[35] S. Natarajan and P. Tadepalli. Dynamic preferences in multi-criteria
reinforcement learning. In Proceedings of the 22nd international con-
ference on Machine learning, pages 601–608, 2005.

[36] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, et al. Training language mod-
els to follow instructions with human feedback. NeurIPS, 2022.

[37] U. Pagallo et al. Even angels need the rules: Ai, roboethics, and the law.
In Proceedings of the Twenty-second European Conference on Artificial
Intelligence, volume 285, pages 209–215. IOS Press, 2016.

[38] A. Pavaloiu and U. Kose. Ethical artificial intelligence-an open ques-
tion. Journal of Multidisciplinary Developments, 2(2):15–27, 2017.

[39] M. Peschl, A. Zgonnikov, F. A. Oliehoek, and L. C. Siebert. Moral:
Aligning ai with human norms through multi-objective reinforced ac-
tive learning. In Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems, pages 1038–1046, 2022.
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[44] M. Rodriguez-Soto, R. Rădulescu, J. A. Rodriguez-Aguilar, and
M. Lopez-Sanchez. Multi-objective reinforcement learning for guar-
anteeing alignment with multiple values. In ALA (Autonomous Agents
and Multi-Agent Systems), 2023.

[45] D. Roijers, D. Steckelmacher, and A. Nowe. Multi-objective Reinforce-
ment Learning for the Expected Utility of the Return. In ALA (Au-
tonomous Agents and Multi-Agent Systems), 2018.

[46] D. M. Roijers, S. Whiteson, and F. A. Oliehoek. Computing Convex
Coverage Sets for Multi-objective Coordination Graphs. In P. Perny,
M. Pirlot, and A. Tsoukiàs, editors, Algorithmic Decision Theory, pages
309–323. Springer. doi: 10.1007/978-3-642-41575-3_24.

[47] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. A Survey
of Multi-Objective Sequential Decision-Making. Journal of Artificial
Intelligence Research, 2013.

[48] D. M. Roijers, L. M. Zintgraf, P. Libin, and A. Nowé. Interactive multi-
objective reinforcement learning in multi-armed bandits for any utility
function. In ALA (Autonomous Agents and Multi-Agent Systems), 2020.



[49] C. Scheirlinck, R. Chaput, and S. Hassas. Ethical smart grid: a gym
environment for learning ethical behaviours. Journal of Open Source
Software, 8(88):5410, 2023.

[50] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. Nature, 2016.

[51] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient
methods for reinforcement learning with function approximation. In
Advances in neural information processing systems, 1999.

[52] E. Tennant, S. Hailes, and M. Musolesi. Learning machine morality
through experience and interaction. arXiv preprint arXiv:2312.01818,
2023.

[53] E. Tennant, S. Hailes, and M. Musolesi. Modeling moral choices in so-
cial dilemmas with multi-agent reinforcement learning. In International
Joint Conference on Artificial Intelligence, 2023.

[54] M. Timmons. Moral theory: An introduction. Rowman & Littlefield
publishers, 2012.

[55] S. Tolmeijer, M. Kneer, C. Sarasua, M. Christen, and A. Bernstein. Im-
plementations in Machine Ethics: A Survey. ACM Computing Surveys,
2021.

[56] P. Vamplew, J. Yearwood, R. Dazeley, and A. Berry. On the lim-
itations of scalarisation for multi-objective reinforcement learning of
pareto fronts. In Advances in Artificial Intelligence, 2008.

[57] P. Vamplew, R. Dazeley, E. Barker, and A. Kelarev. Constructing
Stochastic Mixture Policies for Episodic Multiobjective Reinforcement
Learning Tasks. In Advances in Artificial Intelligence. 2009.

[58] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker. Empir-
ical evaluation methods for multiobjective reinforcement learning algo-
rithms. Machine Learning, 2011.

[59] P. Vamplew, R. Issabekov, R. Dazeley, C. Foale, A. Berry, T. Moore,
and D. Creighton. Steering approaches to pareto-optimal multiobjective
reinforcement learning. Neurocomputing, 2017.

[60] P. Vamplew, R. Dazeley, C. Foale, S. Firmin, and J. Mummery. Human-
aligned artificial intelligence is a multiobjective problem. Ethics and
Information Technology, 2018.

[61] P. Vamplew, C. Foale, R. Dazeley, and A. Bignold. Potential-based
multiobjective reinforcement learning approaches to low-impact agents
for ai safety. Engineering Applications of Artificial Intelligence, 2021.

[62] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning
with double q-learning. In AAAI, 2016.

[63] K. Van Moffaert and A. Nowé. Multi-objective reinforcement learn-
ing using sets of pareto dominating policies. The Journal of Machine
Learning Research, 15(1):3483–3512, 2014.

[64] K. Wakuta. A note on the structure of value spaces in vector-valued
Markov decision processes. Mathematical Methods of Operations Re-
search, 1999.

[65] W. Wallach and C. Allen. Moral machines: Teaching robots right from
wrong. Oxford University Press, 2008.

[66] D. J. White. Multi-objective infinite-horizon discounted Markov de-
cision processes. Journal of Mathematical Analysis and Applications,
1982.

[67] J. Whittlestone, K. Arulkumaran, and M. Crosby. The societal implica-
tions of deep reinforcement learning. Journal of Artificial Intelligence
Research, 2021.

[68] J. Xu, Y. Tian, P. Ma, D. Rus, S. Sueda, and W. Matusik. Prediction-
Guided Multi-Objective Reinforcement Learning for Continuous Robot
Control. International conference on machine learning, 2020.

[69] R. Yang, X. Sun, and K. Narasimhan. A Generalized Algorithm for
Multi-Objective Reinforcement Learning and Policy Adaptation. In Ad-
vances in neural information processing systems, 2019.

[70] C. Yu, J. Liu, S. Nemati, and G. Yin. Reinforcement learning in health-
care: A survey. ACM Computing Surveys, 2021.

[71] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al. Maximum
entropy inverse reinforcement learning. In AAAI, 2008.

[72] L. M. Zintgraf, D. M. Roijers, S. Linders, C. M. Jonker, and A. Nowé.
Ordered preference elicitation strategies for supporting multi-objective
decision making. Autonomous Agents and Multi-Agent Systems, 2018.


