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Abstract. Reinforcement learning (RL) benchmarks are crucial
for facilitating algorithmic progress, as well as supporting evalua-
tion, and reproducibility in the field. This is demonstrated by the
existence of numerous benchmark frameworks developed for vari-
ous RL paradigms, including single-agent RL (e.g., Gymnasium),
multi-agent RL (e.g., PettingZoo), and single-agent multi-objective
RL (e.g., MO-Gymnasium). Multi-objective multi-agent reinforce-
ment learning (MOMARL) is an emerging paradigm that targets
complex decision-making tasks that must balance multiple conflicting
objectives and coordinate the actions of various independent decision-
makers. To support the advancement of the MOMARL field, we intro-
duce MOMALAND, the first collection of standardised environments
for multi-objective multi-agent reinforcement learning. MOMALAND

addresses the need for comprehensive benchmarking in this emerging
field, offering over 10 diverse environments that vary in the number
of agents, state representations, reward structures, and utility consider-
ations. To provide strong baselines for future research, MOMALAND

also includes algorithms capable of learning policies in such settings.

1 Introduction

Many, if not most, complex problems of social relevance, such as
traffic systems [17], taxation policy design [42], or infrastructure
management planning [22], have both a multi-objective and a multi-
agent dimension. This is because such problems often affect multiple
stakeholders, who may care about different aspects of the outcome,
and may have different preferences for them. As such, it is crucial to
advance the field of multi-objective multi-agent decision making to
enable future progress in the application of artificial intelligence (AI).

The development of standardised benchmarks is a key factor that
has driven progress in various areas of AI over the years. Without
standardised, publicly available benchmarks, researchers spend a lot
of unnecessary time re-implementing test environments from pub-
lished papers, reproducibility is made much more difficult, and results
published in different papers are potentially incomparable [25, 10].
Suites of standardised benchmarks have helped to address these is-
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Figure 1: Overview of the libraries related to MOMAland within the
Farama Foundation.

sues already in some fields of AI such as reinforcement learning
(RL). Such benchmarks are exemplified by the seminal Gymnasium
library [40] for single-objective single-agent RL, the PettingZoo li-
brary [37] for multi-agent RL (MARL), and MO-Gymnasium [2] for
multi-objective RL (MORL). Yet, there is no existing library dedicated
to multi-objective multi-agent reinforcement learning (MOMARL).

Targeting the aforementioned gap, we present MOMALAND, the
first publicly available set of MOMARL benchmarks under standard-
ised APIs. MOMALAND is constructed following the standards of
the Farama Foundation ecosystem (Figure 1) and it currently offers
over 10 configurable environments encompassing diverse MOMARL
research settings. By embracing open-source principles and inviting
contributions, we anticipate that MOMALAND will evolve in tandem
with research trends and host new environments in the future.

Additionally, MOMALAND includes utilities and learning algo-
rithms intended to establish baselines for future research in MO-
MARL. The utilities allow for the application of existing MORL and
MARL solving methods through centralisation or scalarisation strate-
gies. Importantly, while the provided baselines can find solutions for
certain MOMARL settings, MOMALAND also features challenges
with no known solution concept. Addressing these challenges requires
tackling open research questions before deriving appropriate solving
methods. Having set this framework, we strongly encourage contribut-
ing new work in MOMARL to the MOMALAND baselines.



2 Related Work

With millions of downloads, Gymnasium [40] (formerly known as
OpenAI Gym [7]) has become the standard open source library for RL
research. The varied collection of versioned environments with a stan-
dardized API allows researchers to evaluate the performance of their
contributions with few code changes, and ensures valid comparisons
to state-of-the-art algorithms.

However, Gymnasium is tailored for single-agent, single-objective
MDPs, and does not offer support for more complex domains in-
volving multiple agents or objectives. Hence, it has been extended in
various ways, such as PettingZoo [37] or OpenSpiel [21] for MARL
and MO-Gymnasium [2] for MORL.

Demonstrating the rising interest in settings involving multiple
agents and objectives, some initial MOMARL benchmarks were pro-
posed by Ajridi et al. [1] and Geng et al. [12]. Additionally, Röpke
[35] introduced Ramo, a framework offering a collection of algo-
rithms and utilities for solving multi-objective normal-form games
which are a particular model studied in MOMARL. However, there is
currently no widely adopted library providing reliable and maintained
implementations of general MOMARL environments [18], and this is
precisely the gap targeted by MOMALAND.

3 Multi-Objective Multi-Agent Reinforcement
Learning

The most general framework for modelling multi-objective multi-
agent decision-making settings is the multi-objective partially ob-
servable stochastic game (MOPOSG). MOPOSGs extend Markov
decision processes [27] to both multiple agents and multiple objec-
tives, under the most general setting in which agents do not observe
the full state of the environment [28].

Definition 1 (Multi-objective partially observable stochastic game).
A multi-objective partially observable stochastic game is a tuple
M = (S,A, T,R,Ω,O), with n ≥ 2 agents and d ≥ 2 objectives,
where:

• S is the state space;
• A = A1 × · · · ×An is the set of joint actions, Ai is the action set

of agent i;
• T : S×A → ∆(S) represents the probabilistic transition function;
• R = R1 × · · · ×Rn are the reward functions, where Ri : S ×

A× S → Rd is the vectorial reward function of agent i for each
of the d objectives;

• Ω = Ω1 × · · · × Ωn is the set of joint observations, Ωi is the
observation set of agent i;

• O : S ×A → ∆(Ω) is the observation function, which maps each
state – joint action pair to a probability distribution over the joint
observation space.

After every timestep, each agent receives an observation according
to the observation function O, instead of directly observing the state.
In this case, memory is required for agents to successfully learn
in the environment [36]. A particular form of this memory occurs
when agents consider the complete history of the current trajectory
denoted as h ∈ H [15] (i.e., the complete trace of executed actions
and received observations).

By making additional assumptions on the MOPOSG model, re-
garding observability, the structure of the reward function, or whether
the problem is sequential or not, we can derive a subset of models
such as the multi-objective stochastic game (MOSG), multi-objective

decentralised partially observable Markov decision process (MODec-
POMDP), multi-objective Bayesian game (MOBG), multi-objective
cooperative Bayesian game (MOCBG), multi-objective multi-agent
Markov decision process (MOMMDP), multi-objective normal form
game (MONFG), or multi-objective multi-agent multi-armed bandit
(MOMAMAB), as illustrated in Figure 2 [28].
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Figure 2: Multi-objective multi-agent decision-making models char-
acterised along three axes: (i) observability; (ii) cooperativeness; (iii)

statefulness [28].

In such settings, an agent behaves according to a policy πi : H×
Ai → [0, 1], that provides a probabilistic mapping between an agent’s
history and its action set. In MOMARL, agents usually aim to optimise
their individual expected discounted return obtained from a joint
policy π. Formally,

vπ
i = E

[
∞∑
t=0

γtRi(st,at, st+1) | π

]
(1)

where π = (π1, . . . , πn) is the joint policy of the agents acting in
the environment, γ is the discount factor and Ri(st,at, st+1) is the
vectorial reward obtained by agent i for the joint action at ∈ A at
state st ∈ S.

Note that since an agent only directly controls its own policy πi,
this introduces subtleties not present in single-agent settings, such as
non-stationarity (stemming from agents simultaneously learning in
the environment) and additional credit assignment challenges (i.e.,
identifying the individual contribution of agents to the resulting reward
signal). Moreover, as a consequence of the fact that the value function
is a vector, vπ

i ∈ Rd, it only offers a partial ordering over the policy
space. Determining the optimal policy requires additional information
on how agents prioritise the objectives or what their preferences over
the objectives are. We can capture such a trade-off choice using a
utility function, ui : Rd → R, that maps the vector to a scalar value.

In the context of multi-objective multi-agent decision-making, Ră-
dulescu et al. [28] propose a taxonomy along the reward and utility
axes. Namely, they propose to characterise settings in terms of indi-
vidual or team rewards and individual, team or social choice utility.
We will use the same dimensions to characterise the environments
introduced by MOMALAND.



1 from momaland.envs.multiwalker_stability import momultiwalker_stability_v0 as _env
2

3 env = _env.parallel_env(render_mode="human")
4 observations, infos = env.reset(seed=42)
5 while env.unwrapped.agents:
6 actions = {agent: policies[agent](observations[agent]) for agent in

env.unwrapped.agents}↪→

7

8 # vec_rewards is a dict[str, numpy array]
9 observations, vec_rewards, terminations, truncations, infos = env.step(actions)

10

11 env.close()

LISTING 1: Parallel API usage.

1 from momaland.envs.multiwalker_stability import momultiwalker_stability_v0 as _env
2

3 env = _env.env(render_mode="human")
4 env.reset(seed=42)
5 for agent in env.agent_iter():
6 # vec_reward is a numpy array
7 observation, vec_reward, termination, truncation, info = env.last()
8 if termination or truncation:
9 action = None

10 else:
11 action = policies[agent](observation)
12 env.step(action)
13 env.close()

LISTING 2: AEC API usage.
4 APIs and Utilities

APIs MOMALAND extends both PettingZoo APIs by returning a
vectorial reward (i.e., a NumPy [14] array) instead of a scalar for each
agent.

The first API, referred to as parallel, enables all agents to act si-
multaneously, as demonstrated in Listing 1. In this mode, signals such
as observations, rewards, terminations, truncations, and additional
information are consolidated into dictionaries, mapping agent IDs to
their respective signals (line 9). Similarly, all actions are provided
simultaneously to the step function as a dictionary, mapping each
agent’s ID to its corresponding action (line 6).

The second API, termed agent-environment cycle (AEC), is suitable
for turn-based scenarios, such as board games [37]. A typical usage
of this API is depicted in Listing 2. In this setup, each loop provides
information solely for the agent currently taking its turn (line 7).

These APIs enable modelling all our benchmarking environments
and offer the advantage of aligning closely with PettingZoo’s conven-
tions, thus facilitating comprehension for MARL practitioners and
reuse of existing utilities such as SuperSuit’s wrappers [38]. Addition-
ally, MOMALAND provides utilities to expose most environments
through both APIs (with the exception of some board games, where
support for the parallel API is deemed unnecessary).

Utilities In addition to environments and standard APIs, MOMA-
LAND provides several utilities that help algorithm designers in creat-
ing and evaluating algorithms in the proposed environments.

These utilities are wrappers that allow modifying one aspect of
the environment, such as normalising observations. MOMALAND

environments are already compatible with PettingZoo and SuperSuit
wrappers out of the box, as long as they do not alter the reward vec-
tors. This allows relying on stable implementations and avoiding code
duplication. However, MOMALAND provides wrappers dedicated
to handling the vectorial rewards, as this is the main difference with

PettingZoo. For instance, the NormaliseReward(idx, agent) wrapper
facilitates the normalisation of the idxth immediate reward compo-
nent for a specified agent. Furthermore, the LineariseReward wrapper
enables the transformation of agent reward vectors into scalar values
through a weighted sum of reward components, thereby converting
multi-objective environments into single-objective ones under the
standard PettingZoo API, see Figure 1. This adaptation allows for the
utilisation of existing multi-agent RL algorithms to learn for a desig-
nated trade-off. Moreover, the CentraliseAgent wrapper compresses
the multi-agent dimension into a single centralised agent, providing
direct conversion to the MO-Gymnasium API [2]. This adaptation
enables learning using multi-objective single-agent algorithms, such
as those featured in MORL-Baselines [10].

5 Environments
MOMALAND provides environments with a diverse range of chal-
lenges to benchmark MOMARL algorithms. Table 1 shows an
overview of all environments, together with a description of the salient
dimensions in multi-objective multi-agent settings. Our environments
cover discrete and continuous state and action spaces, stateless and
stateful environments, cooperative and competitive settings, as well
as fully and partially observable states. Some environments are multi-
objective extensions of PettingZoo domains, others have been imple-
mented from the current literature in MOMARL, and some are newly
introduced, e.g., the CrazyRL variants. In the following, we briefly
outline each environment.

Multi-Objective Beach Problem Domain (MO-BPD) The Multi-
Objective Beach Problem Domain (MO-BPD) [24] is a setting with
two objectives, reflecting the enjoyment of tourists (agents) on their
respective beach sections in terms of crowdedness and diversity of
attendees. Each beach section is characterised by a capacity and
each agent is characterised by a type. These properties, together with



Figure 3: Visualization of some environments in MOMALAND. From left to right: MO-Connect4, CrazyRL/Surround, MO-MultiWalker-
Stability, MO-ItemGathering.
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MO-BPD 2-n 2 ✗∗ ✗ ✓ ✓ ✓ d d
MO-ItemGathering 2-n 2-d ✗∗ ✓ ✗ ✓ ✓ d d
MO-GemMining 2-n 2-d ✗∗ - - ✓ ✗ - d
MO-RouteChoice 2-n 2 ✗∗ - - ✗ ✓ - d
MO-PistonBall 2-n 3 ✗∗ ✗ ✓ ✗ ✓ c d/c
MO-MW-Stability 2-n 2 ✗ ✓ ✓ ✓ ✓ c c
CrazyRL/Surround 2-n 2 ✗ ✓ ✗ ✓ ✓ c c
CrazyRL/Escort 2-n 2 ✗ ✓ ✗ ✓ ✓ c c
CrazyRL/Catch 2-n 2 ✓ ✓ ✗ ✓ ✓ c c
MO-Breakthrough 2 1-4 ✗ ✓ ✗ ✗ ✓ d d
MO-Connect4 2 2-20 ✗ ✓ ✗ ✗ ✓ d d
MO-Ingenious 2-6 2-6 ✗ ✓ ✓ ✓ ✓ d d
MO-SameGame 1-5 2-10 ✗∗ ✓ ✗ ✓ ✓ d d

Table 1: Overview of MOMALAND environments. State observability and discreteness are not specified for MO-GemMining and MO-
RouteChoice as these are stateless domains. Entries marked with ∗ denote environments that can have randomised starting states, but otherwise
no stochastic transitions. Upper limits specified as n or d signal that the environment in question does not enforce an upper limit on the number

of agents or objectives, respectively.
the location selected by the agents on the beach sections, determine
the vectorial reward received by agents. The number of agents is
configurable.

The MO-BPD domain has two reward modes: (i) individual reward,
where each agent receives the reward signal associated with its re-
spective beach section; and (ii) team reward, where the reward signal
for each agent is an objective-wise sum over all the beach sections.
In terms of mathematical frameworks, under the individual reward
setting, the MO-BDP is a MOPOSG, while the team reward setting
casts the problem as a MODec-POMDP.

MO-ItemGathering The Multi-Objective Item Gathering domain
(Figure 3, rightmost picture), adapted from Källström and Heintz
[20], is a multi-agent grid world, containing items of different colours.
Each colour represents a different objective and the goal of the agents
is to collect as many objects as possible. The environment is fully
configurable in terms of grid size, number of agents, and number of
objectives.

MO-ItemGathering is fully observable and has two reward modes:
individual rewards (MOSG), where agents are rewarded only for their
own collected items, or team rewards (MOMMDP), where agents
receive a reward for any object collected by the group.

MO-GemMining In Multi-Objective Gem Mining, extending Gem
Mining / Mining Day [5] to multiple objectives, a number of villages
(agents) send workers to extract gems from different mines. Each

gem type represents a different objective. There are restrictions on
which mines can be reached from each village. Furthermore, workers
influence each other in their productivity. The number of different
gem types, villages, and workers per village are configurable.

MO-GemMining is stateless; each action corresponds to one inde-
pendent mining day. It is fully cooperative and can be modelled as a
multi-objective multi-agent multi-armed bandit (MOMAMAB).

MO-RouteChoice MO-RouteChoice is a multi-objective extension
of the route choice problem [39], where a number of self-interested
drivers (agents) must navigate a road network. Each driver chooses a
route from a source to a destination while minimising two objectives:
travel time and monetary cost. Both objectives are affected by the
selected routes of the other agents, as the more agents travel on
the same path, the higher the associated travel time and monetary
cost. The number of agents is configurable. The environment contains
various road networks from the original route choice problem [31, 39],
including the Braess’s paradox [6] and networks inspired by real-
world cities.

MO-RouteChoice is a stateless environment, thus a MONFG, where
each agent chooses one of the possible routes from its source to
its destination and receives an individual reward based on the joint
strategy of all agents.

MO-PistonBall MO-PistonBall is based on an environment pub-
lished in PettingZoo [37] where the goal is to move a ball to the edge



of the window by operating several pistons (agents). This environment
supports continuous observations and both discrete and continuous
actions. In the original environment, the reward function is individual
per piston and computed as a linear combination of three components.
Concretely, the total reward consists of a global reward proportional
to the distance to the wall, a local reward for any piston that is under
the ball and a per-timestep penalty. In the MOMALAND adaptation,
the environment dynamics are kept unchanged, but now each reward
component is returned as an individual objective. The number of
agents is configurable.

This environment is a MOPOSG, where the only stochastic transi-
tion dynamics occur when determining the initial state of the ball.

MO-MW-Stability Multi-Objective Multi Walker Stability (Fig-
ure 3, third picture from the left) is another adaptation of a Petting-
Zoo environment, originally published in Gupta et al. [13], to multi-
objective settings. In this environment, multiple walker agents aim to
carry a package to the right side of the screen without falling. This
environment also supports continuous observations and actions. The
multi-objective version of this environment includes an additional
objective to keep the package as steady as possible while moving
it. Naturally, achieving higher speed entails greater shaking of the
package, resulting in conflicting objectives. The number of agents is
configurable.

This environment is cooperative and agents only have a partial view
of the global state. Hence, it is a MODec-POMDP.

CrazyRL CrazyRL (Figure 3, second picture from the left) consists
of 3 novel continuous 3D environments in which drones (agents) aim
to surround a potentially moving target [8]. The two objectives of the
drones are to minimise their distance to the target while maximising
the distance between each other. The 3 environments differ in the
behaviour of the target, which can be static, move linearly, or actively
try to escape the agents.

These environments are cooperative and agents can perceive the
location of everyone else. Hence, they are all MOMMDPs.

MO-Breakthrough MO-Breakthrough is a multi-objective variant
of the two-player, single-objective turn-based board game Break-
through. In MO-Breakthrough there are still two agents, but up to
three objectives in addition to winning: a second objective that incen-
tivizes faster wins, a third one for capturing opponent pieces, and a
fourth one for avoiding the capture of the agent’s own pieces. The
board size is configurable as well.

As the game is competitive and fully observable, MO-Breakthrough
falls into the category of MOSGs.

MO-Connect4 MO-Connect4 is a multi-objective variant of the
two-player, single-objective turn-based board game Connect 4 (Fig-
ure 3, leftmost picture). In addition to winning, MO-Connect4 extends
this game with a second objective that incentivizes faster wins, and
optionally one additional objective for each column of the board that
incentivizes having more tokens than the opponent in that column. As
the board size is configurable, so is the number of these objectives.

MO-Connect4 is competitive and fully observable and therefore a
MOSG.

MO-Ingenious MO-Ingenious is a multi-objective adaptation of the
zero-sum, turn-based board game Ingenious. The game’s original rules
support 2-4 players collecting scores in multiple colours (objectives),
with the goal of winning by maximising the minimum score over all
colours. In MO-Ingenious, we leave the utility wrapper up to the users
and only return the vector of scores in each colour objective. The

number of agents, objectives, and board size in MO-Ingenious are
configurable.

MO-Ingenious has two reward modes: (i) individual reward, where
each agent receives scores only for their own actions; and (ii) team
reward, where all collected scores are shared by all agents. Further-
more, it can be played with (i) partial observability as the original
game, or in a (ii) fully observable mode. In terms of mathematical
frameworks, this environment is therefore a MOPOSG, which can
be configured to become a MODec-POMDP when playing in team
reward mode, a MOSG when playing in fully observable mode, or a
MOMMDP when using both.

MO-SameGame MO-SameGame is a multi-objective, multi-agent
variant of the single-player, single-objective turn-based puzzle game
called SameGame [4]. All legal moves in the game remove a group of
tokens of the same colour from the board. The original game rewards
the player for each action with a number of points that is quadratic
in the size of the removed group. MO-SameGame extends this to a
configurable number of agents, acting alternatingly, and a configurable
number of different types of colours (objectives) to be collected.

MO-SameGame has two reward modes: (i) individual reward,
where each agent receives points only for their own actions; and
(ii) team reward, where all collected points are shared by all agents.
It is fully observable and can therefore be modelled as a MOSG in
individual reward mode, or a MOMMDP when using team rewards.

6 Baselines
After introducing our collection of challenging environments and
utilities, this section demonstrates typical learning results on MO-
MALAND environments, for a team reward with unknown team utility
setting. This setting aims at finding the same solution concepts as
single-agent multi-objective RL, i.e., a Pareto set of policies and its
linked Pareto front [16].

Using decomposition We present Algorithm 1, a simple extension
of the MAPPO algorithm [41] to return a Pareto set of multi-agent
policies in cooperative problems. Similar to the works of Felten et al.
[9, 11], it divides the multi-objective problem into a collection of
single-objective problems which can then be solved by a multi-agent
RL algorithm, to obtain the components the final solution set.

In this context, a scalarisation function, parameterised by weight
vectors, allows performing the decomposition and targeting various
areas of the objective space. The most common scalarisation function,
a weighted sum, is used in this algorithm for its simplicity (through
our LineariseReward wrapper, line 6). Notice that the rewards of the

Algorithm 1 MOMAPPO using Decomposition
Input: Number of weight vector candidates n, stopping criterion per
weight stop, Environment MOMAenv .
Output: A Pareto set of joint policies P .

1: P = ∅
2: F = ∅
3: for i ∈ {1, . . . , n} do
4: w = GenerateWeights(F)
5: NormEnv = NormalizeRewards(MOMAenv)
6: MAEnv = LinearizeRewards(NormEnv ,w)
7: π = MAPPO(MAEnv , stop)
8: ṽπ = EvaluatePolicy(MOMAenv , π)
9: Add π to P and ṽπ to F if ṽπ non-dominated in F

10: end for
11: return P
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environment are first normalised to mitigate the difference in scale of
each objective (line 5). The weight vectors are randomly generated
(line 4). After training a multi-agent policy for a given trade-off using
MAPPO [41], the policy is evaluated on the original environment,
allowing to compute an estimate of vπ (line 8) and to add the policy
to the Pareto set of policies if it is non-dominated (line 9). Finally, the
algorithm returns all non-dominated multi-agent policies (line 11).

Figure 4 illustrates the typical metrics results that can be obtained
by running MOMAPPO (Algorithm 1) on a cooperative environment,
mo-multiwalker-stability-v0 in this case. For these runs, the algorithm
uniformly generated 20 weight vectors to explore the objective space.
The performance indicators plotted have been averaged and the 95%
confidence interval is represented by the shaded area. These reflect
the general performance of the algorithm over random seeds ranging
between 0 and 9 included. Moreover, the PF plot gives an idea of the
final result for a given run. The reference point used for hypervolume
calculation is [−300,−300].

The first thing to notice in the plots is that, on average, this algo-
rithm is able to improve its PF over the training process. Indeed, all
indicators improve over the training course. The PF plot reveals that 4
non-dominated policies out of 20 weight vectors have been identified.
It is worth noting that this algorithm is a straightforward adaptation
of MARL and MORL techniques. It can be improved by including
techniques coming from existing MORL works. A thorough review
of such techniques in the context of single-agent MORL is given in
the work of Felten et al. [11].

Using centralisation As mentioned in Section 4, MOMALAND

also provides a CentraliseAgent wrapper that turns a multi-agent multi-
objective environment into a single-agent multi-objective environment
by providing a centralised observation as well as a single vectorial
reward signal. The composition method of the vectorial reward is
determined by a parameter and can be either a component-wise sum
or average of the individual agent rewards. This allows the direct
application of methods featured in MORL-Baselines [10].

To illustrate the compatibility between MOMALAND environments

using the CentraliseAgent wrapper and MORL-Baselines, we select
two approaches, that make different assumptions regarding the en-
vironment or utility characteristics. Pareto Conditioned Networks
(PCN) [32] is a multi-policy approach designed for deterministic envi-
ronments. PCN will return an approximate Pareto front as a solution.
On the other hand, Generalised Policy Improvement Linear Support
(GPI-LS) [3] assumes the utility function is linear and will thus return
the convex hull as a solution [16].

We present in Figure 5 the results obtained by GPI-LS and PCN
on the moitem_gathering_v0 environment. The experiments are run
on the default map of the environment, namely an 8× 8 grid, with 2
agents and 3 different object types (i.e., 3 objectives). The centralised
vectorial reward signal is obtained using a component-wise addition
over all agents’ rewards. The number of timesteps is set to 50 and the
results are averaged over 5 runs (random seeds ranging from 40 to
44), with the shaded area representing the 95% confidence interval.
The reference point for the hypervolume calculation is [0, 0, 0].

We observe that for this instance of the MO-ItemGathering envi-
ronment, both PCN and GPI-LS show consistent learning behaviour
over the runs, reaching similar performance in terms of hypervolume
and expected utility. In terms of cardinality (i.e., number of solutions
in the identified solution set), PCN manages to identify on average
one additional solution, in comparison to GPI-LS.

7 Open Challenges
In this section we discuss notable theoretical and algorithmic chal-
lenges of MOMARL, and hope that our contribution will catalyse
further research in this area.

7.1 Algorithms and Environments for MOMARL

Because it is a relatively new area, limited research has been focused
on MOMARL, with only a few solving methods addressing both
dimensions of the problem. Most works operate in the known utility
setting, effectively relying on or adapting MARL methods, e.g. [24,



30]. A notable exception to this is MO-MIX [18], which is able to
learn a Pareto set of multi-agent policies in the team reward setting.
Additional research is required in general settings to establish solution
concepts and develop algorithms that can identify these.

Before MOMALAND, very few environments have been identi-
fied, modelled, and made available as MOMA problems. Although
we offer a preliminary set of intriguing challenges, we think this
collection can be expanded and invite external contributions of new
and interesting environments. For instance, the majority of the sug-
gested environments lack a known optimal Pareto front. Knowing the
optimal Pareto front would enable algorithm developers to confirm
the optimality of their approaches. Another example would be con-
tributing MOBG or MOCBG environments to the library (Figure 2).
Finally, we also invite collaborations and proposals of domains based
on industrial applications, especially involving environments with
stochastic dynamics.

Hence, by making MOMALAND open-source and open to contri-
butions, we hope to receive external contributions of new algorithms
and environments from the research community.

7.2 Solution Concepts for MOMARL

Similar to MORL, solution concepts for MOMARL, can be defined
using the two main approaches in the literature: the axiomatic ap-
proach and the utility-based approach [16]. To date, the utility-based
approach has generally been the most common approach for MO-
MARL problems, as it allows for prior knowledge about the agents’
preferences over objectives to be incorporated to simplify the problem.

When following the utility-based approach, solution concepts from
traditional single-objective game theory can be extended to multi-
objective settings by measuring agent incentives with respect to indi-
vidual utility (rather than with respect to individual rewards/payoffs
in single-objective game theory). For example, Rădulescu et al. [29]
extended the well-known Nash equilibrium and correlated equilib-
rium solution concepts to MOMA settings using the utility-based
perspective. Much of the analysis to date on solution concepts has
focused on stateless single-shot settings (MONFGs), so further em-
pirical studies are required in sequential settings. Extending existing
solution concepts to MOMA settings is not trivial when following the
utility-based approach, if the utility functions are non-linear. Selecting
the scalarised expected return (SER) criterion in place of the expected
scalarised return (ESR) [16] (or vice versa) can drastically alter the
collective behaviour of the agents. For example, it has been demon-
strated that it may not be possible for agents to reach a stable outcome,
e.g., Nash equilibria may not exist under SER [28] or stable coalitions
may not exist in coalition formation games [19]. It is also possible to
have a mixture of optimisation criteria within the same system, where
some agents follow SER and others follow ESR [34]. Work on such
settings has been extremely limited to date and therefore further work
is required to better understand the implications of mixed optimisation
criteria.

Research on the axiomatic approach to MOMA problems is even
less mature than the utility-based approach. The axiomatic approach
may be a suitable fallback in settings where no information is available
about the agents’ utilities, although the space of joint policies that
could be optimal is potentially much larger when no information
is available about the utilities. As shown in Section 6, applying the
axiomatic approach in team reward settings, where all agents receive
the same reward vectors, is relatively straightforward and the problem
is fully cooperative as all agent incentives are perfectly aligned. The
Pareto optimal set in team reward settings simply includes all joint

policies where the return vector is non-dominated. For individual
reward settings (e.g., adversarial or mixed settings), Pareto optimal
sets could be defined individually for each agent, as a joint policy
that is Pareto optimal with respect to one agent’s reward function may
not necessarily be Pareto optimal for other agents. Such individual
Pareto optimal sets would need to be conditioned on the behaviour
of other agents in the system, so would in effect be a set of non-
dominated responses to the other agents’ policies [28]. When policies
are deterministic with a finite number of discrete actions, the non-
dominated response set for an agent would also have a finite number
of policies. In settings with probabilistic policies, the non-dominated
response set could potentially have an infinite number of policies.

Finally, the relationship between the axiomatic and utility-based
approaches in MOMA systems is currently not well understood and
merits further study. Initial work by Mannion and Rădulescu [23] in a
team reward individual utility setting demonstrated that it is possible
to have settings where none of the Nash equilibria are Pareto optimal,
depending on the preferences of agents over objectives.

7.3 Utility Modelling and Preference Elicitation

In single-agent settings, it is possible to elicit and align preferences
with respect to different trade-offs between objectives by directly
interacting with the users [26, 33]. This is because it is beneficial
for both the agent and the user to share such preferences openly. In
multi-agent team utility settings, this would still be the case.

However, once we find ourselves in the individual utility case, the
process becomes significantly harder. One may look at the problem
from multiple perspectives: agents can interact and model the prefer-
ences of their users, however agents can now also potentially model
their opponents’ utility function, in order to gain an advantage in
the strategic interactions. To the best of our knowledge, interactive
MOMARL, where agents have to concurrently learn their associated
user’s preferences, as well as how to optimally act in the environment,
has not yet been explored. Overcoming the difficulties posed by mis-
alignment of preferences, as well as the fact that it might no longer be
in the agents’ best interest to share their preferences openly (on the
contrary, it might even be better to actively hide this information) are
still very much open challenges.

8 Conclusion

In this work, we presented MOMALAND, the first publicly available
benchmark suite for MOMARL problems. Our library includes a
collection of over 10 environments under two different APIs for turn-
based or simultaneous actions. These environments offer a diverse
set of challenges, varying in the number of agents, state and action
spaces, reward structures, and utility considerations. Notably, some
of these challenges have no known solution concept.

We showed how to leverage existing literature from both multi-
objective RL and multi-agent RL to construct new MOMARL algo-
rithms able to solve some of the presented challenges. These baselines,
along with useful utilities, are also made available to help algorithm
designers in their future research endeavours.

While the release of MOMALAND addresses one of the key chal-
lenges required to progress the field of MOMARL, many open chal-
lenges remain, as highlighted in Section 7. We hope this benchmark
suite will be a valuable asset to the research community and that our
work will inspire and enable future progress in the field.



Acknowledgements

This research has received funding from the project ALIGN4Energy
(NWA.1389.20.251) of the research programme NWA ORC 2020
which is (partly) financed by the Dutch Research Council (NWO),
and from the European Union’s Horizon Europe Research and In-
novation Programme, under Grant Agreement number 101120406.
The paper reflects only the authors’ view and the EC is not respon-
sible for any use that may be made of the information it contains.
This work was also supported by the Fonds National de la Recherche
Luxembourg (FNR), CORE program under the ADARS Project, ref.
C20/IS/14762457, and by funding from the Flemish Government
under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaan-
deren” program and by the FWO, grant number G062819N. Roxana
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forcement learning benchmarks: Revealing the objectives. In Proceed-
ings of the Multi-Objective Decision Making Workshop (MODeM) at
ECAI 2023, 2023.

[2] L. N. Alegre, F. Felten, E.-G. Talbi, G. Danoy, A. Nowé, A. L. Bazzan,
and B. C. da Silva. MO-Gym: A Library of Multi-Objective Rein-
forcement Learning Environments. In Proceedings of the 34th Benelux
Conference on Artificial Intelligence BNAIC/Benelearn, 2022.

[3] L. N. Alegre, A. L. C. Bazzan, D. M. Roijers, and A. Nowé. Sample-
Efficient Multi-Objective Learning via Generalized Policy Improvement
Prioritization. In Proc. of the 22nd International Conference on Au-
tonomous Agents and Multiagent Systems, 2023.

[4] H. Baier and M. H. M. Winands. Nested monte-carlo tree search for
online planning in large mdps. In L. D. Raedt, C. Bessiere, D. Dubois,
P. Doherty, P. Frasconi, F. Heintz, and P. J. F. Lucas, editors, ECAI
2012 - 20th European Conference on Artificial Intelligence. Including
Prestigious Applications of Artificial Intelligence (PAIS-2012) System
Demonstrations Track, Montpellier, France, August 27-31 , 2012, volume
242 of Frontiers in Artificial Intelligence and Applications, pages 109–
114. IOS Press, 2012. doi: 10.3233/978-1-61499-098-7-109. URL
https://doi.org/10.3233/978-1-61499-098-7-109.

[5] E. Bargiacchi, T. Verstraeten, D. M. Roijers, A. Nowé, and H. Hasselt.
Learning to coordinate with coordination graphs in repeated single-stage
multi-agent decision problems. In International conference on machine
learning, pages 482–490. PMLR, 2018.

[6] D. Braess. Über ein paradoxon aus der verkehrsplanung. Un-
ternehmensforschung, 12:258–268, 1968.

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba. OpenAI Gym, June 2016. URL http://arxiv.
org/abs/1606.01540. arXiv:1606.01540 [cs].

[8] F. Felten. Multi-Objective Reinforcement Learning. PhD thesis, Unilu
- Université du Luxembourg [FSTM], Luxembourg, 2024. URL https:
//hdl.handle.net/10993/61488.

[9] F. Felten, E.-G. Talbi, and G. Danoy. MORL/D: Multi-Objective Rein-
forcement Learning based on Decomposition. In International Confer-
ence in Optimization and Learning (OLA2022), 2022.

[10] F. Felten, L. N. Alegre, A. Nowe, A. L. C. Bazzan, E. G. Talbi, G. Danoy,
and B. C. d. Silva. A Toolkit for Reliable Benchmarking and Research
in Multi-Objective Reinforcement Learning. In Proceedings of the 37th
Conference on Neural Information Processing Systems (NeurIPS), 2023.

[11] F. Felten, E.-G. Talbi, and G. Danoy. Multi-Objective Reinforcement
Learning Based on Decomposition: A Taxonomy and Framework. Jour-
nal of Artificial Intelligence Research, 79:679–723, Feb. 2024. ISSN
1076-9757. doi: 10.1613/jair.1.15702. URL https://www.jair.org/index.
php/jair/article/view/15702.

[12] M. Geng, S. Pateria, B. Subagdja, and A.-H. Tan. Benchmarking marl on
long horizon sequential multi-objective tasks. In Proceedings of the 23rd
Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2023. International Foundation for Autonomous Agents and Multiagent
Systems, 2024.

[13] J. K. Gupta, M. Egorov, and M. Kochenderfer. Cooperative multi-agent
control using deep reinforcement learning. In International Conference
on Autonomous Agents and Multiagent Systems, pages 66–83. Springer,
2017.

[14] C. R. Harris, K. J. Millman, S. J. v. d. Walt, R. Gommers, P. Vir-
tanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith,
R. Kern, M. Picus, S. Hoyer, M. H. v. Kerkwijk, M. Brett, A. Haldane,
J. F. d. Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant.
Array programming with NumPy. Nature, 585(7825):357–362, Sept.
2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/
s41586-020-2649-2. Publisher: Springer Science and Business Media
LLC.

[15] M. Hauskrecht. Value-function approximations for partially observable
markov decision processes. J. Artif. Int. Res., 13(1):33–94, Aug. 2000.
ISSN 1076-9757.
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[23] P. Mannion and R. Rădulescu. Comparing utility-based and pareto-
based solution sets in multi-objective normal form games. In 2nd Multi-
Objective Decision Making Workshop (MODeM 2023) @ ECAI 2023,
September 2023. URL https://modem2023.vub.ac.be/.

[24] P. Mannion, S. Devlin, J. Duggan, and E. Howley. Reward shap-
ing for knowledge-based multi-objective multi-agent reinforcement
learning. The Knowledge Engineering Review, 33:e23, 2018. doi:
10.1017/S0269888918000292.

[25] A. Patterson, S. Neumann, M. White, and A. White. Empirical Design
in Reinforcement Learning, Apr. 2023. URL http://arxiv.org/abs/2304.
01315. arXiv:2304.01315 [cs].

[26] M. Peschl, A. Zgonnikov, F. Oliehoek, and L. Siebert. Moral: Aligning
ai with human norms through multi-objective reinforced active learning.
In Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS, volume 2, pages 1038–1046,
2022.

[27] M. L. Puterman. Markov decision processes. Handbooks in operations
research and management science, 2:331–434, 1990.
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