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Abstract. While the satisfaction version of the Rotating Workforce
Scheduling (RWS) problem has been extensively studied, real-life
applications of the problem often require the study of an optimiza-
tion variant, considering stakeholder preferences. This requires the
use of multi-objective methods to solve the problem. In particular,
the introduction of soft constraints often leads to conflicting objec-
tives and, therefore, to a large pool of solutions of varying quality in
different dimensions. Hence, it is important to be able to find suitable
solutions that best meet the requirements for conflicting objectives.
We propose the use of Pareto Simulated Annealing (PSA) to solve
the optimization variant of RWS. This allows us to study large sets
of solutions that approximate the Pareto front. Specifically, different
solutions and the relations between soft constraints can be analyzed.
In addition, this approach allows stakeholders to choose solutions
that best meet the desired properties and comprehend which trade-
offs must be made when trying to optimize conflicting objectives.

1 Introduction
Workforce scheduling is a topic of high practical importance as the
resulting schedules provide the structure for a significant part of the
employee’s lives. Many different versions of such problems have
been addressed over the years [9, 24, 7]. While traditionally the fo-
cus has been on reducing cost, a growing body of work on employee
well-being [6] shows the importance of incorporating these aspects.
It is known that effects like fatigue due to bad workplace conditions
impact not only economic costs of companies [23] but also lead to se-
vere consequences in both psychological and physiological health of
individuals [17, 12], including a higher risk for certain diseases and
disorders [19], and reduced social contacts with family and friends
[1]. Therefore, practical guidelines [13] and metrics have been pro-
posed to evaluate risk-related characteristics [10, 11].

Petrovic et al. [22] presented case studies on personnel planning
focusing on the impact of including well-being aspects in the objec-
tive function for heuristic optimization approaches. Shifts are created
by minimizing a weighted sum of violations of undesired character-
istics, like working weekends, long night shift stints, and others.

However, the increasing number of objectives leads to a difficult
process of tuning the weights in such an approach, and weighted sum
objectives can not be used to show the trade-offs and dependencies
between different objectives. This leads to the use of multi-objective
methods, which allow the generation of a whole set of solutions, ap-
proximating the Pareto front. These solutions allow to show the dif-
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ferent relations between objectives to the decision makers. There are
only few lines of work considering these approaches in the area of
employee scheduling, among them are Burke et al. [4], Li et al. [16].

The Rotating Workforce Scheduling (RWS) problem can be
classified as a single-activity tour scheduling problem with non-
overlapping shifts and rotation constraints [2]. Over the years, sev-
eral approaches have been used to solve the problem, including use
in commercial software for almost 20 years [20]. At this point, only
the satisfaction version of the problem was studied, where only hard
constraints need to be fulfilled. A complete method based on con-
straint programming (CP) was introduced by Musliu et al. [21] and
further extended by Kletzander et al. [14], in particular by introduc-
ing several optimization goals used in practice, turning the satisfac-
tion problem into an optimization problem. The CP method was used
in an instance space analysis by Kletzander et al. [15], leading to the
creation of new instances to better cover the transition between fea-
sible and infeasible instances. The current state-of-the-art approach
is a branch-and-cut (b&c) framework by Becker et al. [3], which re-
duces the runtime substantially compared to previous methods for
the satisfaction version and a limited set of optimization goals.

While the satisfaction version of RWS is rapidly solved with b&c,
in practice, a range of different objectives are required to judge so-
lutions for the problem. These include non-local properties like the
distance between free weekends, which are difficult to incorporate
into the exact approaches. Therefore, we propose to use Pareto Sim-
ulated Annealing (PSA) to solve the multi-objective version of RWS.

We apply PSA to an extended version of the RWS problem, con-
sidering six different soft constraints. We mainly focus on a combi-
nation of three conflicting constraints and aim to improve and adapt
the general PSA algorithm introduced by Czyżak and Jaszkiewicz [5]
We explore how different configurations enhance the results of PSA.
To do so we evaluate the configurations on three problem instances
of various sizes and compare the hypervolumes and other metrics of
the resulting solution sets.

2 Problem Domain
The Rotating Workforce Scheduling domain deals with problems
where shifts are fixed. These have to be assigned to employees ac-
cording to several constraints such as allowed sequences of shifts
and limitations to consecutive shift assignments. In many applica-
tions, a rotating schedule, where each employee rotates through the
same sequence of shifts with different offsets, is a preferred way of
scheduling. We provide a formal definition of the problem and intro-
duce new objectives that focus on employee well-being.



Formal definition. The satisfaction version of RWS is based on
definitions and notation by Musliu et al. [20, 21]:

• n: Number of employees.
• d: Length of the schedule. The total length of the planning period

is n·d, as each employee rotates through all n rows. We set d = 7,
corresponding to the number of days in a week.

• A: Set of work shifts (activities), enumerated from 1 to m. A
day off is denoted by a special activity O with numerical value
0, A+ = A ∪ {O}.

• T : Temporal requirements matrix, an m × d-matrix where each
element Ti,j corresponds to the number of employees that need to
be assigned shift i ∈ A at day j.

• ℓw and uw: Minimal and maximal length of blocks of consecutive
work shifts.

• ℓa and ua: Minimal and maximal lengths of blocks of consecutive
assignments of shift a for each a ∈ A+.

• F2 and F3: Sequences of shifts of length 2 and 3 that are forbidden
in the schedule (e.g. N D, a night shift followed by a day shift).
This is typically required due to legal or safety concerns.

The task is to construct a cyclic schedule S, represented as an
n× d-matrix, where each Si,j ∈ A+ denotes the shift or day off
that employee i is assigned during day j in the first period of the
cycle. An exemplary schedule can be found in Table 1.

A feasible solution must cover all requirements of T , such that no
employee is assigned to multiple shifts per day, and meet the hard
constraints induced by ℓw, uw, ℓa, ua and F2,F3.

Table 1. Example of a rotating workforce schedule

Empl. Mon Tue Wed Thu Fri Sat Sun
1 D D D D N N -
2 - - A A A A N
3 N N - - D D D
4 A A N N - - -

Soft constraints. We focus on the optimization variants and extend
the problem introduced by Kletzander et al. [14] with soft constraints
to be minimized. These objectives aim to increase well-being of em-
ployees and meet applicable best practices of Britain’s national reg-
ulator for workplace health and safety (HSE) shift work guidelines
[13]. We consider the following soft constraints:

• sN>3 : Minimize the number of consecutive night shifts exceeding
3.

• sℓdev : Minimize the squared deviation of working sequence
lengths from length 5.

• sww: Minimize the number of working weekends. A weekend is
free if Saturday and Sunday are off. Otherwise, it is a working
weekend.

• sdmax : Minimize the maximum distance dmax between consecu-
tive free weekends (dmax = n+ 1 if no weekend is free).

• sdrms : Minimize the root weeks mean of the sum of squared dis-

tances between weekends
√

1/n
∑n

i=1 d̂
2
i , where d̂i is the dis-

tance minus 1 to the next free weekend if weekend i is free, and n
otherwise.

• sNww: Minimize the number of working weekends, including Fri-
day night.

Classically, a solution has a weight vector λ and a violation vector v.
An optimal solution minimizes the objective function given in Equa-
tion 1. In order for the solution to be feasible, the first sum must be
equal to zero.

obj =
∑

h∈ Hard
constraints

λh · vh +
∑

s∈ Soft
constraints

λs · vs (1)

In our case, we are interested in feasible Pareto-optimal solutions. To
determine the non-dominance of solutions, we do a pairwise compar-
ison of the unweighted violations vi for each constraint i. We enforce
that feasible solutions always dominate infeasible ones.

3 Method
Previously, the Rotating Workforce Scheduling (RWS) problem was
mainly solved with methods that generate a single solution based on
pre-specified weight vectors. Our interest lies in generating multiple
non-dominated solutions from which the decision maker can select
a suitable solution or learn about trade-offs between different ob-
jectives. To achieve this, we adapt the Pareto Simulated Annealing
(PSA) framework [5] for RWS to generate sets of solutions that ap-
proximate the Pareto fronts in different multidimensional objective
spaces.

PSA performs Simulated Annealing (SA) runs in parallel with a
set of generating solutions G while keeping a non-dominated solu-
tions archive S. In each iteration, a move is applied to every solution
x ∈ G, generating neighbouring solutions. A new solution y that is
generated is compared to the current set of non-dominated solutions
S. The set S is updated according to the hard constraint violations
and soft objectives of y. If y is not dominated by any solution, it is
added to S, and any solution dominated by y is removed.

The applied move is accepted, resulting in the replacement of x by
y as generating solution in G if one of the following applies:

• y is added to the set of non-dominated solutions S. (This criterion
was added and is not proposed in the original implementation)

• y dominates x.
• with probability sl (given in Equation 2), which depends on the

current temperature t.

sl(x, y, t) = min

(
1, e

∑k
i=0

λi(x)·(vi(x)−vi(y))
t

)
(2)

Every solution has its own weight vector λ, which is updated in
each iteration. This should lead to solutions diverging into different
directions within the solution space and allow for better coverage
of the space. For each solution, x, the closest neighbouring solution
x′ ∈ S, which is not dominated by x, is determined. This is classi-
cally done by comparing the absolute distance in terms of violations
of two solutions, i.e. ∥v(x)− v(x′)∥1. The weights of x are updated
according to the violations of solution x′ using the update factor α
(see Equation 3).

λi(x) =

{
λi(x) · α if vi(x) ≤ vi(x

′)

λi(x)/α otherwise
(3)

We additionally propose an alternative approach to updating the
weight vectors, where the closest neighbour is determined by com-
parison of the weight vectors, i.e. x′ st. ∥λ(x)−λ(x′)∥1 is minimal.
This can lead to a more diverse distribution of solutions in the search
space, especially when considering a small number of dimensions.

Lastly, the weight vectors are normalized such that the sum of
weights equals 1. We enforce a minimum weight of 0.001, an ad-
dition recently introduced by Mischek and Musliu [18]. This ensures
that every constraint is still relevant during the search.

A further modification, initially proposed by Drexl and Nikulin
[8], consists of restarting generating solutions x ∈ G. For this variant



of PSA solutions x, which have not contributed new solutions to the
set of non-dominated solutions S for a certain number of consecutive
iterations, are replaced by a random solution from S. The aim of this
addition is to replace ’bad’ generating solutions with new generating
solutions that are more promising.

4 Computational Study
We now present the application of PSA to the RWS problem. Our
computational testbed was a cluster running Ubuntu 22.04.2 LTS
with 2× Intel Xeon CPU E5-2650 v4 (2.2 GHz, 12 physical cores,
no hyperthreading). The algorithm was implemented in Python 3.9
and run with the fast PyPy1 interpreter.

We evaluate our approach on three different real-life RWS in-
stances2 of different size and difficulty. The first instance (instance
10) only considers n = 27 employees, while the second (instance
15) and third (instance 20) deal with 64 and 163 employees. As
initial construction solutions we use solutions generated using the
branch-and-cut [3] approach.3 This ensures that all our construction
solutions are feasible, allowing us to concentrate on the optimization
towards soft-constraints. Additionally, this ensures that all solutions
added to the set of non-dominated solutions are feasible, as no infea-
sible solution can dominate a feasible solution. For our experiments,
we use 8 generating solutions, which should allow for a good tradeoff
between runtime and quality of the solution set [5]. Additionally, all
experiments are run with a starting temperature t = 1, cooling fac-
tor β = 0.999 and 1 million iterations. When the temperature falls
below 10−5, t is reheated to the starting temperature of 1. We use
a fixed weight of 5 for hard constraints and only update weights for
soft constraints using the factor α = 1.05. The initial soft constraint
weights are chosen at random for each generating solution.

For the application of moves, we consider PeriodIntervalSwaps.
An application swaps two intervals of length 1 to 7 (number of days)
that differ by a period of 7, meaning two sequences of consecutive
shifts are swapped between two employees. Thereby, the number and
type of shifts assigned to each day remain the same, as only shifts
between the same days of the week are swapped.

We have conducted brief experiments, including all of the pro-
posed soft constraints. Based on the most conflicting constraints,
length deviation (ℓdev), working weekends (ww) and weekend dis-
tance (dmax) we have decided to focus on the quality of the solutions
for the 3-dimensional case.

The quality of the generated solution is evaluated by using the
hypervolume metric. The hypervolume indicates the percentage of
the multidimensional objective space, which is dominated by the ap-
proximated Pareto front. The size of the whole objective space is de-
termined by the ideal(min) and anti-ideal (max) points. The domi-
nated space spans from the anti-ideal point to the approximated front.
The (anti-)ideal point in every dimension is given minimal (maximal)
violation value of the corresponding constraint that a solution can
have. The ideal points for sww and sℓdev were calculated using the
branch-and-cut framework by Becker et al. [3], to which we added
the squared length deviation minimization. Also, the anti-ideals for
sww and sℓdev could be determined by using the branch-and-cut ap-
proach but by aiming to maximize the violation. Lastly, the ideal
for sdmax is given by the ratio between working and free week-
ends ⌈ min(sww)

n−min(sww)
⌉, while the anti-ideal points correspond to the

anti ideal of sww (except for instance 20 where no weekend is free

1 https://www.pypy.org/
2 https://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/
3 https://github.com/tribec/bac-rwsp

Table 2. Ranges from ideal to anti-ideal points for soft constraints on
different instances.

sℓdev sww sdmax

instance [min, max] [min, max] [min, max]
10 [ 1, 48] [ 12, 18] [1, 18]
15 [20, 154] [ 45, 54] [3, 54]
20 [ 2, 962] [120, 163] [3, 164]

in the worst-case). The ideals (max) and anti-ideals (min) for the
three dimensions and instances can be found in Table 2. We have
used these points for the calculation of the normalized hypervolume
(further just referred to as hypervolume).

6-Dimensional Experiments. We use parallel coordinate plots to
visualize the approximated fronts. This allows stakeholders to in-
vestigate individual solutions while providing insights into correla-
tions between different constraints. The plot can be studied inter-
actively by filtering regions for each dimension. Thereby only so-
lutions which satisfy the filters in all dimensions are shown. This
shows clearly which tradeoffs have to be made in which dimensions
when a stakeholder wants to improve a specific objective. Such a plot
can be found in Figure 1. Each line corresponds to a non-dominated
solution, indicating the violation values by the intersection with the
corresponding axis. The solutions are color-coded with respect to the
length deviation dimension.
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Figure 1. Approximated Pareto front after 1M iteration for instance 20
with all dimensions, making weight updates according to closest violation

neighbours

We can observe that while the number of working weekends,
working weekends including Friday night and equal distance be-
tween free weekends show a strong correlation, the length deviation
constraint seems to be in conflict with optimizing free weekends.

We validate our observations using the sample Pearson correla-
tion coefficient r(dim1, dim2). We compared the dimensions length
deviation, working weekends and weekend distance for all three
instances. For this we took the violation vectors for each non-
dominated solution generated by runs considering all dimensions and
making weight updates using closest-violation neighbours. Table 3
shows, that while the correlations of the objectives differ for each in-
stance, a general tendency of negative correlation can be observed.
In addition each instance provides a strong negative correlation for a
different combination of the three dimensions.



Table 3. Sample Pearson correlation coefficients for three objectives.

instance r(sℓdev , sww) r(sww, sdmax ) r(sdmax , sℓdev )
10 -0.368 0.109 -0.736
15 -0.013 -0.414 -0.201
20 -0.873 -0.134 -0.179

2-Dimensional Experiments. Our motivation for introducing
weight-neighbour weight updates stems from the observation, that
for the 2-dimensional case the weight vectors of the generating so-
lution converged toward 1 in one of the dimensions. This lead to
solutions almost only optimizing one of the two dimensions. As a re-
sult, only few non-dominating solutions could be found that optimize
both constraints in equal manner. When using weight-neighbour up-
dates this gap could be closed. however, fewer solutions that mainly
optimize one of the constraints could be obtained. A visualization of
the observation for instance 20 and dimensions length deviation and
working weekends can be found in Figure 2. Comparing the hyper-
volumes for all three instances over 10 runs considering length devi-
ation and working weekends yielded similar average hypervolumes
for both weight updating procedures. Nevertheless, we investigated
both approaches also for multi-dimensional cases.
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Figure 2. Combined solution sets over 10 runs using closest weight and
violation neighbour for weight updates for instance 20. The solutions are

given in the min/max normalized space over both dimensions.

3-Dimensional Experiments. We additionally calculated exact 2D
Pareto fronts for sww and sℓdev with the ε-constraint method using
the branch-and-cut (b&c) approach. There, the optimization of sℓdev
is converted into a constraint with an upper bound starting from its
ideal, iteratively optimizating sww while increasing the constraint
bound stepwise, until the ideal of sww is hit. This could be performed
within a couple of minutes runtime. A visualization of this front com-
pared to a Pareto front approximation using PSA with weight-vectors
to determine the closest neighbouring solution can be found in Fig-
ure 3. The generating solutions are given as arrows, directed in the
direction within the 2-dimensional space toward which they are opti-
mizing. It can be observed that while the solution set generated with
b&c provides better solutions for length deviation and working week-
end constraints, weekend distance violations are comparably high.

We evaluated the hypervolume for the different configurations of
PSA over all three instances considering the length deviation, work-
ing weekends and weekend distance constraints. For each configu-
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Figure 3. Approximated Pareto front over 3 dimensions after 1M iteration
for instance 20. The 2-dimensional ideal and non-dominated solutions using

branch-and-cut are given as reference.

ration, 10 runs were performed using the same random generator
seeds for the different configurations. The hypervolume is calcu-
lated in regard to the ideal (min) and anti-ideal (max) for each of
the three dimensions. The development of the average hypervolume
when restarting solutions after a certain number of non-improvement
iterations (consecutive iterations where a solution does not contribute
to the set of non-dominated solutions) can be found in Figure 4.
As a reference, the average hypervolume for random weight up-
dates, where weights are assigned at random in each iteration, as
well as the average hypervolume for classical weight updates using
the weight or violation vectors to determine closest neighbours, are
indicated. It can be observed that frequent restarts (after 10 to 1k
non-improvement iterations) lead to worse hypervolumes. This can
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Figure 4. Comparison of hypervolume for random and classic weight
updates with spline hypervolume for restarting approach.



be explained by the fact that multiple generating solutions can be
replaced by the same non-dominated solutions, leading to a lack of
variety within the generating solutions. However, by increasing the
threshold on non-improvement iterations the hypervolume can be in-
creased compared to the classical PSA approach. For instances 15
and 20 restarting after 10k non-improvement iterations leads to bet-
ter results than for a threshold of 100k iterations, where the hyper-
volume tends to decline. In contrast, the hypervolume for instance 10
can hardly be increased by using the restarting method. This implies
that a suiting threshold depends on the instance but should not be set
too low, as this reduces the diversity among the generating solutions.

In Table 4 the average, maximal and standard deviation for the
hypervolume over the 10 runs for different PSA configurations are
given. For restarting runs the configurations with the best and worst
average hypervolume are indicated. Again, it is evident that choos-
ing the threshold is crucial, as low thresholds lead to worse hyper-
volumes than the approach using no restarting and random weight
updates. In addition to the hypervolume, the average runtime over
10 runs for the PSA procedure is given. It can be observed, that the
configuration using random weight updates takes the least runtime.
This is evident, as no closest neighbour must be determined to up-
date weights, hence decreasing the number of comparisons that have
to be made. However, random weight updates lead to worse hyper-
volumes than the classical approach. It can also be observed that fre-
quent restarts (after 10 iterations) increase the runtime while high
thresholds for restarting yield only slightly increased runtimes com-
pared to the classic approach but can improve the hypervolume of
the obtained solution sets. This indicates that seldom restarting is a
feasible addition to the classical implementation of PSA.

Comparing the performance of the presented approaches to the
branch-and-cut reference points calculated with the ε-constraint
method, we observe that while PSA can provide solution sets with
more hypervolume for instance 10 and for some runs on instance 15,
it is outperformed by branch-and-cut on instance 20. As the exact
approach can not explicitly optimize weekend distance, we also ana-
lyze the mean violation for the best PSA configuration and b&c over
the non-dominated solutions. The results can be obtained in Table 5.

As expected, the branch-and-cut approach has difficulties in opti-
mizing sdmax , especially in comparison to the PSA configurations.
While the results for sww are very similar for both algorithms, b&c

Table 4. Average, max and standard deviation for hypervolume and
average runtime over 10 runs for different PSA configurations. Weight
update configuration (v/w) and restart thresholds (10, 10k, 100k) are

indicated. Hypervolumes of b&c are given as reference.

instance configuration hv - avg hv - max hv - stdv t[h]
10 random 0.736 0.748 0.009 1.160

classic-v 0.743 0.757 0.008 1.307
classic-w 0.749 0.755 0.004 1.343
restart-v10 0.580 0.678 0.074 1.760
restart-w100k 0.751 0.757 0.005 1.406
b&c 0.561

15 random 0.553 0.644 0.050 1.575
classic-v 0.580 0.648 0.037 1.726
classic-w 0.570 0.663 0.054 1.758
restart-v10 0.340 0.497 0.067 2.370
restart-v10k 0.682 0.838 0.082 1.659
b&c 0.782

20 random 0.715 0.750 0.014 2.261
classic-v 0.746 0.796 0.024 2.425
classic-w 0.769 0.794 0.017 2.481
restart-v10 0.694 0.741 0.019 3.360
restart-w10k 0.795 0.841 0.024 2.597
b&c 0.872

Table 5. Mean values for three objectives comparing PSA configurations
with highest avg hypervolume to branch-and-cut (b&c).

instance configuration sℓdev sww sdmax

10 restart-w100k 7.02 12.89 8.18
b&c 2.25 13.25 12.75

15 restart-v10k 33.84 47.79 11.34
b&c 23.55 47.22 17.33

20 restart-w10k 51.04 130.51 16.52
b&c 22.98 130.84 41.70

yields better results for sℓdev , which is to be expected as this objec-
tive can be optimized using branch-and-cut.

These results show, that while the hypervolume provides a good
general indication on the quality of the solution sets, it does not al-
low for insights on the individual dimensions. We have shown that
branch-and-cut provides very good solutions considering local objec-
tives such as length deviation or working weekends. However, PSA
can outperform branch-and-cut on non-local properties. In general,
PSA with the right configuration manages to produce results com-
parable with branch-and-cut, while it also benefits from the initial
feasible solutions provided by the exact solver. Therefore, interesting
future work would be a further hybridization of both by (re-)starting
PSA from partially optimized branch-and-cut solutions.

5 Conclusions
We have implemented the Pareto Simulated Annealing (PSA) algo-
rithm for the Rotating Workforce Scheduling (RWS) problem. We
proposed different modifications and adaptions of the algorithm and
evaluated them in three instances of varying difficulty. Three differ-
ent combinations of employee-centric objectives have been studied.
First, we applied PSA using all six soft constraints, allowing us to de-
termine the most conflicting constraints among them. After that, we
evaluated the influence of using closest weight neighbour updates in
the 2-dimensional space (length deviation and working weekends).
While the obtained hypervolumes were very similar, we observed
that using the closest weight-neighbours generates better compro-
mising solutions, while violation-based updates enhance solutions
favouring one of the dimensions. In the 3-dimensional space, addi-
tionally considering the weekend distance, again, no significant dif-
ference in hypervolume between weight or violation-based updates
could be observed. Nevertheless, it would be interesting to use dif-
ferent metrics to evaluate the generated solutions, as also for the 3-
dimensional space, a lack of diversity among the weight vectors of
generating solutions and slightly worse results for compromising so-
lutions could be observed. We have shown that sporadically reset-
ting generating solutions that do not contribute to the set of non-
dominating solutions can improve the hypervolume compared to the
classical PSA approach. Additionally, these sparse resets do not in-
crease runtime significantly. Lastly, we compared our approach to the
current state-of-the-art branch-and-cut. While PSA could not consis-
tently outperform branch-and-cut, it yielded substantially better re-
sults for the non-local weekend distance objective. It would be in-
teresting to evaluate how this observation applies to other non-local
objectives such as root mean squared weekend distance ddrms . In the
future, we want to further improve our approach by making use of the
strengths that b&c provides. It would be interesting to use parame-
ter tuning to determine optimal configurations, to investigate how
instance characteristics influence suiting configurations, and what
other metrics should be considered to evaluate solution quality. Fi-
nally, we also want to validate our results on a larger set of bench-
mark instances.
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