
Multi-Objective Credit Assignment
for Multiagent Systems

Raghav Thakara,*, Gaurav Dixita and Kagan Tumera

aCollaborative Robotics and Intelligent Systems (CoRIS) Institute, Oregon State University
ORCID (Raghav Thakar): https://orcid.org/0009-0008-1156-9178, ORCID (Gaurav Dixit):

https://orcid.org/0000-0003-4553-8405, ORCID (Kagan Tumer): https://orcid.org/0009-0007-3809-7257

Abstract. Multiagent systems are increasingly used in complex co-
ordination tasks such as environmental monitoring, underwater ex-
ploration, and air-traffic management. These tasks often involve mul-
tiple, possibly conflicting objectives. Developing coordinated joint
policies in such settings is challenging due to the difficulty in as-
signing credit to individual policies within a joint policy, especially
when only the overall system performance is observed. This paper
introduces the Multi-Objective Difference Evaluations (DMO) oper-
ator, which enables credit assignment in multi-objective joint-policy
evolution without scalarising the multi-objective reward. The DMO

operator measures the impact of an individual policy on the system’s
performance by comparing the hypervolumes of nondominated sets
with and without the given policy. By preserving and promoting key
policies, the DMO operator enhances the evolution process, leading
to more efficient joint-policy evolution. We conduct experiments in
a continuous multi-rover exploration problem, highlighting the ben-
efits of DMO in achieving better coordination and performance in
multi-objective multiagent systems.

1 Introduction
Complex tasks like environmental monitoring, extraterrestrial explo-
ration, and air-traffic management are well-known applications of
multiagent systems. Many such tasks involve not just one, but sev-
eral, possibly conflicting objectives. For example, for an environmen-
tal monitoring task, such conflicting objectives may comprise 1) per-
forming an evenly spread-out area coverage over the environment,
2) performing focused surveillance over particular points of interest,
while 3) minimising the energy expense of each drone. To succeed in
such tasks, multiagent systems must learn coordinated joint-policies
that balance multiple objectives at once.

Learning good team-oriented joint-policies is challenging, partic-
ularly when the reward generated by the environment encapsulates
the entire team’s performance. This is the credit assignment prob-
lem, and is generally addressed by providing agent-specific feedback
that aims to quantify a particular agent’s performance. However, such
approaches are not well suited for multi-objective settings, where an
agent’s impact needs to be assessed across multiple objectives.

Multi-Objective Optimisation approaches, especially population-
based Multi-Objective Evolutionary Algorithms (MOEAs) provide
a way to optimise for different trade-offs across the objectives by
optimising for the Pareto front [35, 13, 19, 17]. On the other hand,

∗ Corresponding Author. Email: thakarr@oregonstate.edu.

credit assignment methods have been applied successfully in single-
objective settings, ranging from Multiagent Reinforcement Learn-
ing (MARL) to Cooperative Coevolution [23, 14, 6, 3]. However, in
multi-objective problems, like multi-objective MARL, credit assign-
ment is typically addressed by scalarisation of the multi-objective re-
ward using agent-specific utility functions [32, 20, 5, 21]. Prior work
has explicitly tackled the multi-objective multiagent credit assign-
ment problem, but also using a priori agent-specific reward scalari-
sation [33].

A drawback to using utility functions is the risk of enforcing
sub-optimal preferences on agents and the need for substantial do-
main expertise to design them. Additionally, in many settings, a
clear preference over the objectives may simply not exist beforehand.
Population-based MOEAs avoid this problem of reward scalarisa-
tion, but do not fit with existing credit assignment techniques.

In this paper, we introduce the Multi-Objective Difference Evalua-
tions (DMO) operator to perform credit assignment in multi-objective
joint-policy evolution without a priori scalarisation of the multi-
objective reward. We use the difference in the hypervolume of a
nondominated set of joint-policies with and without a joint-policy’s
constituent policy to measure that policy’s impact on the system per-
formance. DMO is a multi-objective adaptation of Difference Evalu-
ations (D), a state-of-the-art credit assignment operator [2, 3].

DMO estimates agent-level credit without a priori scalarisation of
the reward function, therefore capturing the true impact of individual
agents in a multiagent system. This agent-level credit can be used to
guide offspring-creation in the evolution process to produce poten-
tially high-performing joint-policies. Population-based MOEAs can
leverage DMO to efficiently arrive at a true estimate of the Pareto
front, where each Pareto-optimal joint-policy expresses a different
trade-off among the objectives.

This work introduces and defines the DMO operator. We then
present a minimally-modified version of an existing MOEA, the
NSGA-II algorithm, that leverages the DMO operator and shows
performance boost-ups in convergence-time to, and quality of, the
Pareto front estimate. Lastly, we compare the performance of modi-
fied NSGA-II with NSGA-II and also perform an ablation study by
replacing the DMO-values with the global fitness1 in the modified
NSGA-II algorithm.

1 Please note that in this work, the terms ’reward’ and ’fitness’ are used in-
terchangeably and refer to the numeric value generated by the environment
for the multiagent team at the end of a simulation episode.

2 Background
2.1 Multi-Objective Optimisation

Many real-world problems are multi-objective, where improving per-
formance in one area can negatively impact another (e.g., speed vs.
safety vs. comfort in autonomous vehicles). Instead of seeking a sin-
gle best solution, it is often preferred to develop a range of Pareto-
optimal solutions, each offering different trade-offs across objectives.
On the Pareto front (the set of Pareto-optimal solutions), no solution
is better than another; all are considered equally optimal.

There has been substantial progress in recent years in multi-
objective optimisation. A majority of the work generally falls into
one of the two categories – methods that focus on 1) improving the
Pareto front estimate [13, 19, 10, 17, 35], and 2) optimising a single
super objective created by taking a weighted sum over all the ob-
jectives [22, 20, 5, 21]. In the context of multiagent systems, more
agent-oriented versions of the latter, also referred to as utility-based
approaches in the literature are generally favoured. However, these
approaches can enforce sub-optimal preferences over objectives and
can require substantial domain expertise to be developed. Enforcing
preferences can also compromise the true multi-objective nature of
the problem by optimising a predetermined choice instead of choos-
ing from several optima.

2.1.1 Multi-Objective Evolution

If the end-goal is to achieve the best Pareto front estimate,
population-based MOEAs provide a naturally-fitting paradigm for
multi-objective optimisation. The inherent presence of multiple so-
lutions in the population pool lends itself very well to the goal of
arriving at multiple equally-optimal solutions [12].

The body of research on MOEAs is vast. Some representative
work proposed algorithms such as PAES , PESA-II, NPGA, SPEA2
and NSGA-II [13, 19, 10, 17, 35]. A common feature among these al-
gorithms are the elites preservation and diversity preservation mech-
anisms. By ensuring the preservation and proliferation of the best
(elite) and most unique (diverse) solutions in each generation, these
algorithms improve their speed of convergence with the Pareto front
and the final spread of solutions [18]. Of these, the NSGA-II algo-
rithm remains the most popular for problems with few objectives
and serves as the most suitable for comparison. Some recent work
also demonstrates neuroevolution of an agent in multi-objective set-
tings, but instead of using diversity-preserving mechanisms, it adds
diversity as an objective to also optimise for [29]. In this paper, the
NSGA-II algorithm and its operators will be a common recurrence.

2.2 Multiagent Systems and the Credit Assignment
Problem

One of the key problems in multiagent systems research is the credit
assignment problem, where an agent must determine the effect of
its actions on the system’s performance. This quantified contribution
must inform the agent’s policy, promoting positive team-oriented ac-
tions. Credit can be provided in several ways, including as a reward
in (deep) reinforcement learning, or as a learning signal to augment
the selection probabilities of high-performing policies in evolution-
ary algorithms. Credit assignment becomes particularly important in
environments with tightly-coupled tasks that require a simultaneous
action by two or more agents to yield any reward. Without credit
assignment, tasks requiring such explicit coordination may remain
unsolved.

Existing credit assignment techniques like Difference Rewards
[1], D++ [26], and even learning-focused methods like Value Decom-
position Networks (VDN) [30], QMIX [27], and COMA [15] can be
implemented with little to no modifications with agent-specific util-
ity functions that scalarise multiple objectives into one. However, for
getting a spread of Pareto-optimal solutions, this problem becomes
considerably harder.

2.3 Difference Evaluations

The Difference Evaluation operator (D) can be used to estimate the
contribution of a single agent to the entire multiagent system’s per-
formance [8, 3, 9, 2, 1, 14, 6]. For an agent i, the Difference Evalua-
tion is defined as:

Di = G(z)−G(z−i ∪ ci), (1)

where z is the joint-action of the system, G(z) is the global system
performance, z−i is the joint-action of the system with the action of
agent i removed, and ci is a counterfactual action that agent i’s action
is replaced with. G(z−i ∪ ci) gives an estimate of the performance
of a theoretical system without the contribution of agent i [26]. The
counterfactual term ci represents the notion of a default action with
no contribution to the system performance. This default action comes
intuitively in many problems. For example, the counterfactual term
can represent a static agent that does not move from its initial starting
position in a continuous environment-observation problem [24].

D has been successfully applied to tackle the credit assignment
problem in approaches that evolve a multiagent system using Co-
operative Coevolutionary Algorithms (CCEAs) by providing a local
fitness evaluation to each agent [8, 3, 9]. In Multiagent Reinforce-
ment Learning (MARL) approaches, D is used to provide granular
feedback from the global team reward to condition the policy of each
agent [14, 6]. Interestingly, D has also been applied in multi-objective
MARL and multiagent NSGA-II [32, 33], but with the a priori scalar-
isation of the multi-objective reward.

3 Problem Domain
In this paper, we investigate the continuous multi-rover exploration
problem. This domain serves as a proxy for several real-world
multiagent problems, like environmental-monitoring, underwater-
exploration, and distributed lunar sensing and measurement [11, 25,
31]. Several previous works have used a variant of this domain to
test various multiagent coordination algorithms [26, 8, 3, 24]. In this
paper, we describe a multi-objective version of the multi-rover ex-
ploration problem to test our method on.

3.1 Problem Description

The domain consists of a set of homogeneous rovers on a two-
dimensional plane that must observe a set of stationary Points-of-
Interest (POIs). POIs may have a coupling requirement, which would
require multiple agents (rovers, in this problem) to simultaneously
observe the POI for it to yield any reward. A POI is observed when
m ≥ POI.coupling agents are simultaneously located within
POI.obs-radius distance of the POI. The observation window
of a POI is the window in an episode in which it can be observed.
Even if the other requirements of the POI are met, the POI does not
yield any reward unless the global timestep is within the observa-
tion window of the POI. The set of POIs can be divided into multi-
ple categories, each of which, define a ’type’ of POI. Each POI-type

can be made to possess different properties (such as position, reward
value, coupling requirement, observation radius, observation window
etc.), making the exploration and observation task more challenging.
Sufficiently different properties among POI-types can necessitate the
agents to demonstrate drastically different behaviours to be able to
contribute to the global system reward. By tracking the rewards from
each POI-type separately, we transform this problem into a multi-
objective one, with each objective being to maximise the reward col-
lected from each POI-type. The reward for observing a POI, its cou-
pling requirements, its observation radius, its observation window,
and its type are unknown to the agents, and they must coordinate to
maximise the total system reward across each objective.

glob_reward: +R

coupling: 2

Figure 1: An example of a POI yielding a reward due to its coupling
requirement being met through rovers observing it within its obser-
vation radius.

3.2 Agent Modelling

Each rover is equipped with three sets of sensors that provide infor-
mation about its location, other rovers, and POIs respectively. The
first set provides the global position of the rover in (x, y) form. The
second set contains four sensors arranged planarly at 90◦ intervals
around the rover to form four quadrants. Each sensor counts the
number of other rovers in its respective quadrant. Lastly, the third
set similarly contains four sensors that count the number of POIs in
each quadrant. Each rover is constrained by the range within which
its sensors can detect and count other rovers or POIs.

The state vector containing this sensor-information is the input to
the agent’s policy, represented as a fully connected feed-forward neu-
ral network. The policy network outputs the displacement in the x
and y directions that the agent must take as an action. The displace-
ment the agent can attain at each timestep is constrained to a reason-
able limit respecting the environment dimensions

4 Method
In this section we provide a detailed explanation of the DMO operator
and its incorporation into a multi-objective evolutionary algorithm.

4.1 The DMO Operator

EAs operate on a population of candidate solutions, wherein each in-
dividual in the population is a parameterised representation of the
entity being optimised. When optimising, say, joint-policies for a
multiagent system, each individual (or candidate solution) contains
a vector of policies – each policy corresponding to an agent in the

num_rovs:1
num_pois:0

num_rovs:0
num_pois:2

num_rovs:1
num_pois:1

num_rovs:0
num_pois:0

pos: (12.31, -3.55)

1

1

0

0

0

0

1

2

12.31

-3.55
state
vector

nu
m_
ro
vs

nu
m_
po
is

po
s

Figure 2: Sensor-layout on a rover. The rover counts the number of
other rovers and POIs in each quadrant. Detection is restricted by
the range of the sensors. Combined with the current position of the
rover, this information makes up the input state vector for the rover’s
policy.

system. Existing MOEAs, like NSGA-II, operate on the fitness vec-
tor, containing a candidate solution’s fitness on each objective. The
application of NSGA-II in this context is sub-optimal, as it does not
take into account the impact, or effect, of individual policies within
a joint-policy (aka an individual) when performing the various evo-
lutionary operators like selection, crossover, and mutation to create
the offspring set. The lack of a policy-level (or agent-level) fitness
means that highly impactful policies that may be a part of subpar
joint-policies may be lost during evolution, while undesirable or low-
impact policies that are a part of high-performing joint-policies may
continue to proliferate. This potentially sub-optimal evolution can
negatively impact the speed with which the evolution process con-
verges, and the quality of the Pareto front estimate to which it con-
verges.

The main challenge in assigning agent-level credit in multi-
objective settings is finding a representative value that accurately
captures the impact of a single policy on its joint-policy’s perfor-
mance. Before finding a representative value for a policy’s impact, it
is first important to make clear the features that comprise the ’perfor-
mance’ of a joint-policy:

• The magnitude of each fitness in the joint-policy’s fitness vector
• To what degree the joint-policy increases the spread of its Pareto

front
• How ’unique’ the joint-policy is in the population of solutions

Our key insight here is that by measuring the contribution of a
single policy to the hypervolume of the nondominated set its joint-
policy lies on, we effectively measure the policy’s contribution to
each of the above three features, and thus to the true performance
of its joint-policy. The hypervolume metric is accepted to capture
all three of the above features by measuring proximity to the Pareto
front, spread, and diversity [16, 34, 28].

To this end, we propose the Multi-Objective Difference Evaluation
(DMO) operator. In a population of joint-policies, DMO computes the
difference in the hypervolume of an individual’s (aka joint-policy’s)
nondominated set, and the hypervolume of that nondominated set
with one policy in the individual replaced with a default counter-
factual policy. Intuitively, DMO answers the question: how does the
hypervolume change, if a policy in an individual is replaced with a
default? The measure of this change is the policy’s DMO-value, or

impact. The DMO-value is given by:

DMO(j) = H(J)−H(J−J ∪ Jc) (2)

where,
Jc = J−j ∪ jc (3)

and,

H(J) = hypervolume({J.fitness | J ∈ J }) (4)

Here, j ∈ J is an individual policy in joint-policy (or individual)
J . J is the set of joint-policies of the same nondomination-level as
J in the population, i.e. it is the nondominated set that J is in. H
computes the hypervolume of a nondominated set of joint-policies.
J−J is J’s nondominated set with J removed, Jc is the counterfac-
tual joint-policy that contains one counterfactual policy jc inserted
in place of a policy j, and J−j is the joint-policy with j removed.

Assuming maximisation across all objectives, a positive DMO-
value means that the hypervolume reduced when that policy was
replaced by a counterfactual one. The higher the DMO-value for a
policy, the more impactful it can be considered, and the more likely
should be its preservation and proliferation in the evolution process.

The choice of the number of parent individuals used to create the
offspring set is upto the System Designer. As long as each policy in
the parent set of joint-policies has its DMO-value computed and as-
signed, the offspring-creation step can leverage DMO-values to create
highly fit offsprings.

4.2 The Top-Level Evolutionary Algorithm

Having defined the DMO operator, we now plug DMO into an NSGA-
II-like algorithm to showcase a practical implementation. Although
the effects of DMO are largely agnostic to the exact structure or
type of multi-objective EA, in this paper, we elect to implement a
minimally-modified version of the NSGA-II algorithm with the DMO

operator. We choose the NSGA-II algorithm for its immense popu-
larity, and the high likelihood of familiarity with it among readers.

We utilise the fast-nondominated-sort() and
crowding-distance-assign() functions as-is from the

Algorithm 1 Top-level Evolutionary Algorithm

1: Initialise populations P0, Q0 each containing N joint-policies
comprising K policies each

2: for t ∈ [0, T] do
3: Pt = Pt ∪Qt

4: foreach joint-policy p ∈ Pt do
5: evaluate(p)
6: end for
7: F = fast-nondominated-sort(Pt)
8: i = 0
9: while |Pt+1|+ |Fi| ≤ N do

10: DMO-assign(Fi)
11: Pt+1 = Pt+1 ∪ Fi

12: i = i+ 1
13: end while
14: crowding-distance-assign(Fi)
15: crowding-distance-sort(Fi)
16: DMO-assign(Fi)
17: Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)] // Discard excess
18: Qt+1 = make-DMO-informed-offsprings(Pt+1)
19: end for

NSGA-II algorithm [13]. These two functions are responsible for
the elite-preservation and diversity-preservation nature of NSGA-II
respectively. The two main modifications we make to NSGA-II are
as follows:

• DMO-assign(): Compute and assign DMO-values using Equa-
tion 2

• make-DMO-informed-offsprings(): Create an offspring
set on the basis of the DMO-values

Algorithm 1 formally defines the top-level algorithm we
use in this paper. Algorithm 2 is an algorithmic repre-
sentation of the DMO-assign() function that computes
and assigns DMO-values according to Equation 2. The
make-DMO-informed-offsprings() function creates
an offspring set by utilising the policy-level DMO-values. It performs
selection of individual policies from the population based on their
DMO-values to assemble new offspring joint-policies. Algorithm 3
defines this process. The select() function uses softmax to select
a policy from a set of DMO-values of policies. Figure 3 visually
demonstrates this process, and also shows how the policy at a certain
index in the offspring comes from selecting across the policy at the
same index in each joint-policy in the population. This is unlike the
offspring creation step in NSGA-II, which uses a binary-tournament
selection using the nondomination-level and crowding distance,
followed by a one-point crossover.

Algorithm 2 DMO-assign(J)

1: Input: A nondominated set J = {J0, J1, ...JM−1} of joint-
policies

2: hJ = H(J) // Hypervolume from Equation 4
3: foreach joint-policy J ∈ J do
4: J−J = J \ J
5: foreach policy j ∈ J do
6: Jc = (J \ j)∪ jc // Swap j with a counterfactual policy
7: j.DMO-value = hJ −H(J−J ∪ Jc)
8: end for
9: end for

Algorithm 3 make-DMO-informed-offsprings(P)

1: Input: A population set P of N joint-policies, comprising K
policies each

2: Output: An offspring set Q of N joint-policies
3: Initialise empty set Q
4: for n ∈ N do
5: Initialise blank joint-policy q
6: for k ∈ K do
7: q[k] = select({p.DMO-value | p ∈ P})
8: end for
9: Q = Q ∪ {q}

10: end for
11: return Q

5 Experimental Setup
5.1 Simulation Details

To show the effectiveness of using DMO, we perform our experi-
ments on instances of the multi-objective continuous rover explo-
ration problem (rover domain hereon). We setup two environments

Property EEasy EHard

Size 100× 100 units 160× 160 units
Episode Length 100 timesteps 240 timesteps

Number of Type A POIs 8 4
Number of Type B POIs 4 4

Type A Observation Radius 10 units 5 units
Type B Observation Radius 10 units 5 units

Type A Observation Window 100 timesteps 240 timesteps
Type B Observation Window 25 timesteps 40 timesteps

Type A Reward +10, Repeats +20, Does Not Repeat
Type B Reward +30, Repeats +30, Repeats

Table 1: Configuration of EEasy and EHard environments. EHard is harder to collect rewards from compared to EEasy . The greater environ-
ment size, smaller observation radii of POIs, and non-repeating nature of Type A rewards contribute to this increased difficulty. When a POI
has a repeating reward, it incentivises agents to continuously observe it from the same position. However, when the reward does not repeat, it
incentivises exploration of other POIs by the agents after being observed once, making reward-collection harder.

joint-policy 1

so
ftm

ax

so
ftm

ax

so
ftm

ax

so
ftm

ax

joint-policy 2

joint-policy 3
....
....
....
....

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................
joint-policy N

agent 1
policy

agent 2
policy

agent 3
policy

agent K
policy

parents

offspring..................

Figure 3: Offspring-creation by performing index-wise softmax over
the DMO-value of the policy at that index across all joint-policies
in the parent set. Note how the offspring’s policy at a certain index
comes from the policy at the same index in the parent. Thus, an off-
spring joint-policy of size K may have up to K parents.

(a) EEasy (b) EHard

Figure 4: Layout of POIs in EEasy and EHard environments. The
dense distribution of POIs in EEasy allows teams to collect rewards
even by demonstrating apparently unintelligent behaviours.

– EEasy and EHard that differ in the spatial density of rewards that
agents can collect. Each agent can displace by a maximum of 4 units
at each timestep, and receives information from a 10 unit radius that
makes up its state. In both environments, a team of 10 agents start
from the centre of the environment and must appropriately observe
POIs to yield a reward. The environments contain POIs of two types
– Type A and Type B that represent two objectives. The team receives
a cumulative reward for each objective at the end of the episode. Ta-
ble 1 contains the exact configuration of both environments. Figure
4 shows the spatial layout of POIs in both environments.

5.2 Algorithmic Details

We test three algorithms in the EEasy and EHard environments –
a modified version of NSGA-II that uses DMO-values for credit as-
signment (DMO), NSGA-II, and an ablated version of DMO (DMO-
Abl) that simply uses the hypervolume (of the nondominated set a
team belongs to) as agent-level credit instead of DMO-values (which
capture the difference in hypervolumes). Each algorithm is run for
600 generations with a population of 100 joint-policies containing 10
policies (one per agent) each. To begin with, each policy-network’s
weights are randomly initialised between [−1, 1]. In each generation,
we create 100 offsprings. We mutate the offsprings by applying gaus-
sian noise (Mean = 0, Standard Deviation = 0.05) to the weights of
each policy-network of each offspring. For DMO, the counterfactual
policy fixes the corresponding agent to its starting position for the en-
tire simulation episode. Each algorithm (DMO, NSGA-II, DMO-Abl)
is run five times (each run of each algorithm with random initial pop-
ulations and policy weights) to accurately analyse its performance.

6 Results
We study the quality of the Pareto front estimate evolved by each
algorithm by comparing the hypervolumes at each generation in Fig-
ure 5. The solid lines represent the mean hypervolumes across multi-
ple runs, while the shaded regions indicate the Standard Error of the
Mean (SEM) around these means. Both DMO and DMO-Abl clearly
outperform NSGA-II, which supports the intuition that it is highly
inefficient to evolve good team-oriented policies without an estimate
of the contribution of individual agents of the team. However, the
performance comparison between DMO and DMO-Abl is more inter-
esting.

In EEasy , DMO-Abl converges much faster to a Pareto front with
a considerably larger hypervolume as compared to DMO. In EHard,
however, although small, there is a noticeable performance improve-
ment when using DMO as compared to DMO-Abl. A plausible expla-

0 100 200 300 400 500 600
Generation

0.6

0.8

1.0

1.2

Hy
pe

rv
ol

um
e

1e7

DMO
DMO-Abl
NSGA-II

(a) EEasy

0 100 200 300 400 500 600
Generation

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Hy
pe

rv
ol

um
e

1e5

DMO
DMO-Abl
NSGA-II

(b) EHard

Figure 5: Performance of DMO, NSGA-II, and DMO-Abl on EEasy and EHard environments. As the environment becomes more challenging
with sparser rewards, credit assignment becomes more useful in evolving good team behaviour.

(a) DMO in EEasy

(b) DMO-Abl in EEasy

Figure 6: Trajectories from dominant joint-policies evolved using
DMO and DMO-Abl in EEasy .

(a) DMO in EHard

(b) DMO-Abl in EHard

Figure 7: Trajectories from dominant joint-policies evolved using
DMO and DMO-Abl in EHard.

nation for why DMO-Abl outperforms DMO in EEasy is the potential
for being rewarded for several types of behaviours, as clear from Fig-
ure 4. The more informed credit estimated in DMO is possibly too
small a learning signal to quickly see performance improvements
in the reward-rich EEasy environment. Figures 6a and 6b, which
show sample team trajectories achieved from DMO and DMO-Abl re-
spectively, support this reasoning. DMO-Abl is able to learn more di-
verse and coordinated behaviours that are potentially more impactful
(spreading out to outer POIs, occupying inner POIs continuously,
visiting several POIs for short durations, and having greater spatial
coverage), while DMO learns less diverse, and less ’developed’ be-
haviours. The highly overlapping trajectories of multiple agents mov-
ing towards the extreme corners of the environment supports this. On
the other hand, DMO-values offer a visible benefit in the more chal-
lenging EHard environment (Figure 5b), likely due to requiring more
intelligent behaviour to efficiently yield rewards.

Based on these results, an important general takeaway is that any
form of agent-level credit, as long as it is roughly aligned with de-
sired team behaviour, considerably aids the evolution process for
multiagent teams and should feature centrally in algorithms for co-
operative multiagent systems in multi-objective settings.

7 Discussion

In this paper, we presented the Multi-Objective Difference Evalua-
tions (DMO) operator to perform credit assignment in multi-objective
evolution for multiagent systems. We applied DMO to a minimally
modified version of a popular MOEA, the NSGA-II algorithm, and
showed significant performance boost-ups in performance on the
rover domain. We then performed an ablation study to isolate the
effects of the DMO operator and demonstrate the importance of multi-
objective credit assignment at large. Lastly, we qualitatively discuss
the limitations of the DMO operator and hypervolume indicator.

The proposed DMO operator has been shown to perform well with
the hypervolume metric. As a result, the drawbacks of using the hy-
pervolume indicator transfer directly onto the DMO operator. Its use
in practical applications is highly sensitive to the choice of the ref-
erence point used to compute it. Specifically, the fitness of each in-
dividual in the population must dominate the reference point to be
able to be included in any hypervolume calculation. This means that
the ’worst’ possible performance of an individual in the population
must be known a priori, and must still be dominant over the reference
point. Based on the problem, the lower bound for an individual’s fit-
ness may or may not be known beforehand, making the selection of
the reference point challenging. The hypervolume metric is also ex-
pensive to compute, with the time complexity growing exponentially
with the number of objectives [7]. There exist several other multi-
objective performance indicators in the literature, like the Inverted
Generational Distance (IGD) metric, the Spread metric, and the Ep-
silon metric [28, 4]. Based on the problem, one or more of these
metrics may be more suitable to use with a DMO-like operator.

To concretely assess the positive effects of the DMO operator, we
will conduct experiments with more agents and in more complex
multi-objective domains as future work. Similarly, an ablation study
at the joint-policy level (by measuring the impact of a whole joint-
policy on the hypervolume, instead of a single policy contained in
it) will be crucial to probe and study the impact of DMO in multi-
objective multiagent problems. Finally, to alleviate the shortcomings
associated with the hypervolume indicator, we will consider addi-
tional performance indicators such as IGD and Spread [28, 4].

Acknowledgements
This work was partially supported by the National Science Founda-
tion grant No. NSF IIS-2112633 and Air Force Office of Scientific
Research grant No. FA9550-19-1-0195.

References
[1] A. Agogino and K. Tumer. Efficient evaluation functions for multi-rover

systems. In K. Deb, editor, Genetic and Evolutionary Computation –
GECCO 2004, pages 1–11, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg. ISBN 978-3-540-24854-5.

[2] A. Agogino and K. Tumer. Analyzing and visualizing multiagent
rewards in dynamic and stochastic domains. Autonomous Agents
and Multi-Agent Systems, 17:320–338, 10 2008. doi: 10.1007/
s10458-008-9046-9.

[3] A. Agogino, K. Tumer, and R. Miikkulainen. Efficient credit assign-
ment through evaluation function decomposition. In Proceedings of
the 7th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’05, page 1309–1316, New York, NY, USA, 2005. Association
for Computing Machinery. ISBN 1595930108. doi: 10.1145/1068009.
1068221. URL https://doi.org/10.1145/1068009.1068221.

[4] C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, and L. Salomon. Per-
formance indicators in multiobjective optimization. European Jour-
nal of Operational Research, 292(2):397–422, 2021. ISSN 0377-
2217. doi: https://doi.org/10.1016/j.ejor.2020.11.016. URL https://
www.sciencedirect.com/science/article/pii/S0377221720309620.

[5] T. Brys, A. Harutyunyan, P. Vrancx, M. E. Taylor, D. Kudenko, and
A. Nowe. Multi-objectivization of reinforcement learning problems by
reward shaping. In 2014 International Joint Conference on Neural Net-
works (IJCNN), pages 2315–2322, 2014. doi: 10.1109/IJCNN.2014.
6889732.

[6] J. Castellini, S. Devlin, F. A. Oliehoek, and R. Savani. Difference
rewards policy gradients. In 20th International Conference on Au-
tonomous Agents and Multiagent Systems, May 2021. URL https:
//www.microsoft.com/en-us/research/publication/dr-reinforce/.

[7] T. M. Chan. Klee’s measure problem made easy. In Proceedings
of the 2013 IEEE 54th Annual Symposium on Foundations of Com-
puter Science, FOCS ’13, page 410–419, USA, 2013. IEEE Computer
Society. ISBN 9780769551357. doi: 10.1109/FOCS.2013.51. URL
https://doi.org/10.1109/FOCS.2013.51.

[8] M. Colby and K. Tumer. Shaping fitness functions for coevolving co-
operative multiagent systems. volume 1, pages 425–432, 06 2012.

[9] J. Cook, K. Tumer, and T. Scheiner. Leveraging fitness critics to learn
robust teamwork. In Proceedings of the Genetic and Evolutionary Com-
putation Conference, GECCO ’23, page 429–437, New York, NY, USA,
2023. Association for Computing Machinery. ISBN 9798400701191.
doi: 10.1145/3583131.3590497. URL https://doi.org/10.1145/3583131.
3590497.

[10] D. Corne, N. Jerram, J. Knowles, and M. Oates. Pesa-ii: Region-based
selection in evolutionary multiobjective optimization. Proc. 6th Int.
Conf. Pparallel Prob. Solving from Nature PPSN-VI, 01 2001.

[11] J.-P. de la Croix, F. Rossi, R. Brockers, D. Aguilar, K. Albee, E. Boro-
son, A. Cauligi, J. Delaune, R. Hewitt, D. Kogan, G. Lim, B. Mor-
rell, Y. Nakka, V. Nguyen, P. Proença, G. Rabideau, J. Russino, M. S.
da Silva, G. Zohar, and S. Comandur. Multi-agent autonomy for space
exploration on the cadre lunar technology demonstration. In 2024 IEEE
Aerospace Conference, pages 1–14, 2024. doi: 10.1109/AERO58975.
2024.10521425.

[12] K. Deb. Multi-objective Optimisation Using Evolutionary Algorithms:
An Introduction, pages 3–34. Springer London, London, 2011. ISBN
978-0-85729-652-8. doi: 10.1007/978-0-85729-652-8_1. URL https:
//doi.org/10.1007/978-0-85729-652-8_1.

[13] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Com-
put., 6:182–197, 2002. URL https://api.semanticscholar.org/CorpusID:
9914171.

[14] S. Devlin, L. Yliniemi, D. Kudenko, and K. Tumer. Potential-based
difference rewards for multiagent reinforcement learning. In Proceed-
ings of the 2014 International Conference on Autonomous Agents and
Multi-Agent Systems, AAMAS ’14, page 165–172, Richland, SC, 2014.
International Foundation for Autonomous Agents and Multiagent Sys-
tems. ISBN 9781450327381.

[15] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. White-
son. Counterfactual multi-agent policy gradients. In Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence and Thir-
tieth Innovative Applications of Artificial Intelligence Conference and

Eighth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-
57735-800-8.

[16] A. P. Guerreiro, C. M. Fonseca, and L. Paquete. The hypervolume indi-
cator: Computational problems and algorithms. ACM Comput. Surv.,
54(6), jul 2021. ISSN 0360-0300. doi: 10.1145/3453474. URL
https://doi.org/10.1145/3453474.

[17] J. Horn, N. Nafpliotis, and D. Goldberg. A niched pareto genetic algo-
rithm for multi-objective optimization. volume 1, pages 82 – 87 vol.1,
07 1994. ISBN 0-7803-1899-4. doi: 10.1109/ICEC.1994.350037.

[18] W. Huang, Y. Zhang, and L. Li. Survey on multi-objective evolutionary
algorithms. Journal of Physics: Conference Series, 1288(1):012057,
aug 2019. doi: 10.1088/1742-6596/1288/1/012057. URL https://dx.
doi.org/10.1088/1742-6596/1288/1/012057.

[19] J. Knowles and D. Corne. The pareto archived evolution strategy: a
new baseline algorithm for pareto multiobjective optimisation. In Pro-
ceedings of the 1999 Congress on Evolutionary Computation-CEC99
(Cat. No. 99TH8406), volume 1, pages 98–105 Vol. 1, 1999. doi:
10.1109/CEC.1999.781913.

[20] P. Mannion, K. Mason, S. Devlin, J. Duggan, and E. Howley. Multi-
objective dynamic dispatch optimisation using multi-agent reinforce-
ment learning: (extended abstract). In Proceedings of the 2016 In-
ternational Conference on Autonomous Agents & Multiagent Systems,
AAMAS ’16, page 1345–1346, Richland, SC, 2016. International
Foundation for Autonomous Agents and Multiagent Systems. ISBN
9781450342391.

[21] P. Mannion, S. Devlin, K. Mason, J. Duggan, and E. Howley. Pol-
icy invariance under reward transformations for multi-objective rein-
forcement learning. Neurocomputing, 263:60–73, 2017. ISSN 0925-
2312. doi: https://doi.org/10.1016/j.neucom.2017.05.090. URL https://
www.sciencedirect.com/science/article/pii/S0925231217311037. Mul-
tiobjective Reinforcement Learning: Theory and Applications.

[22] K. Miettinen and M. Mäkelä. On scalarizing functions in multi-
objective optimization. OR Spectrum, 24:193–213, 01 2002. doi:
10.1007/s00291-001-0092-9.

[23] D. T. Nguyen, A. Kumar, and H. C. Lau. Credit assignment for col-
lective multiagent rl with global rewards. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_
files/paper/2018/file/94bb077f18daa6620efa5cf6e6f178d2-Paper.pdf.

[24] A. Nickelson, N. Zerbel, G. Dixit, and K. Tumer. Shaping the behavior
space with counterfactual agents in multi-objective map elites. In Pro-
ceedings of the 15th International Joint Conference on Computational
Intelligence - Volume 1: ECTA, pages 41–52. INSTICC, SciTePress,
2023. ISBN 978-989-758-674-3. doi: 10.5220/0012164800003595.

[25] G. Notomista, C. Pacchierotti, and P. R. Giordano. Multi-robot per-
sistent environmental monitoring based on constraint-driven execu-
tion of learned robot tasks. In 2022 International Conference on
Robotics and Automation (ICRA), pages 6853–6859, 2022. doi: 10.
1109/ICRA46639.2022.9811673.

[26] A. Rahmattalabi, J. J. Chung, M. Colby, and K. Tumer. D++: Struc-
tural credit assignment in tightly coupled multiagent domains. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4424–4429, 2016. doi: 10.1109/IROS.2016.7759651.

[27] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and
S. Whiteson. Monotonic value function factorisation for deep multi-
agent reinforcement learning. J. Mach. Learn. Res., 21(1), jan 2020.
ISSN 1532-4435.

[28] N. Riquelme, C. Von Lücken, and B. Baran. Performance metrics in
multi-objective optimization. In 2015 Latin American Computing Con-
ference (CLEI), pages 1–11, 2015. doi: 10.1109/CLEI.2015.7360024.

[29] J. Schrum and R. Miikkulainen. Evolving agent behavior in multiob-
jective domains using fitness-based shaping. In Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO 2010), pages
439–446, Portland, Oregon, July 2010. URL http://nn.cs.utexas.edu/
?schrum:gecco10.

[30] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel. Value-decomposition networks for cooperative multi-agent
learning based on team reward. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS
’18, page 2085–2087, Richland, SC, 2018. International Foundation for
Autonomous Agents and Multiagent Systems.

[31] M. Xanthidis, B. Joshi, J. M. O’Kane, and I. Rekleitis. Multi-robot ex-
ploration of underwater structures. IFAC-PapersOnLine, 55(31):395–
400, 2022. ISSN 2405-8963. doi: https://doi.org/10.1016/j.ifacol.
2022.10.460. URL https://www.sciencedirect.com/science/article/pii/

S240589632202506X. 14th IFAC Conference on Control Applications
in Marine Systems, Robotics, and Vehicles CAMS 2022.

[32] L. Yliniemi and K. Tumer. Multi-objective multiagent credit assign-
ment through difference rewards in reinforcement learning. In G. Dick,
W. N. Browne, P. Whigham, M. Zhang, L. T. Bui, H. Ishibuchi, Y. Jin,
X. Li, Y. Shi, P. Singh, K. C. Tan, and K. Tang, editors, Simulated Evolu-
tion and Learning, pages 407–418, Cham, 2014. Springer International
Publishing. ISBN 978-3-319-13563-2.

[33] L. Yliniemi and K. Tumer. Multi-objective multiagent credit assignment
in reinforcement learning and nsga-ii. Soft Computing, 20(10):3869–
3887, Oct 2016. ISSN 1433-7479. doi: 10.1007/s00500-016-2124-z.
URL https://doi.org/10.1007/s00500-016-2124-z.

[34] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolu-
tionary algorithms: Empirical results. Evolutionary Computation, 8(2):
173–195, 2000. doi: 10.1162/106365600568202.

[35] E. Zitzler, M. Laumanns, and L. Thiele. Spea2: Improving the strength
pareto evolutionary algorithm. 2001. URL https://api.semanticscholar.
org/CorpusID:16584254.

