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aUniversity of Groningen
bUniversity of Amsterdam

cUniversity of Galway
dUtrecht University

eVrije Universiteit Brussels
ORCID (Nicole Orzan): https://orcid.org/0000-0002-9204-0688, ORCID (Erman Acar):

https://orcid.org/0000-0001-7541-2999, ORCID (Davide Grossi): https://orcid.org/0000-0002-9709-030X, ORCID
(Patrick Mannion): https://orcid.org/0000-0002-7951-878X, ORCID (Roxana Rădulescu):
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Abstract. Addressing the question of how to achieve optimal
decision-making under risk and uncertainty is crucial for enhanc-
ing the capabilities of artificial agents that collaborate with or sup-
port humans. In this work, we address this question in the con-
text of Public Goods Games. We study learning in a novel multi-
objective version of the Public Goods Game where agents have dif-
ferent risk preferences, by means of multi-objective reinforcement
learning. We introduce a parametric non-linear utility function to
model risk preferences at the level of individual agents, over the col-
lective and individual reward components of the game. We study the
interplay between such preference modelling and environmental un-
certainty on the incentive alignment level in the game. We demon-
strate how different combinations of individual preferences and envi-
ronmental uncertainty sustain the emergence of cooperative patterns
in non-cooperative environments (i.e., where competitive strategies
are dominant), while others sustain competitive patterns in coopera-
tive environments (i.e., where cooperative strategies are dominant).

1 Introduction

How can cooperation emerge and sustain itself in situations where
agents do not necessarily have a direct motive for cooperation? This
is one of the fundamental questions in various research areas, such
as evolutionary biology [21, 35], political sciences [8, 9], cognitive
sciences [43] and physics [11]. To answer this question, researchers
developed and studied models of real-world scenarios involving ten-
sion between the collective and personal motives, called social dilem-
mas [13, 26]. The main characteristic of these social dilemmas is that
players are better off defecting at the individual level, while, at the
group level, the best outcome is mutual cooperation.

In this work, we focus on a specific class of social dilemmas
known as Public Goods Games (PGG), extensively studied in lit-
erature [3, 47]. A PGG describes situations where cooperation by
all agents is Pareto optimal, but because of the profitability of free-
riding [5], rational agents fail to cooperate: defection by all agents
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is a Nash equilibrium [34]. We refer to this kind of game as mixed-
motives, since the incentives of the agents are partially misaligned.

In addition to incentive misalignment, other factors influencing the
emergence of cooperation in many real-world scenarios include un-
certainty and different individual attitudes towards risk [20, 27].

Uncertainty can have different sources: we refer to environmen-
tal uncertainty when actors are unsure about the amount of goods
they can receive from the environment [4, 53], and to social uncer-
tainty when it comes to ambiguity about the opponents’ possible ac-
tions [10, 16]. Individual preferences express a personal inclination
towards one choice over another. In the specific context of PGGs,
we are interested in modelling two main types of individuals in the
presence of uncertainty: those that are biased towards taking risks
in the presence of uncertainty, also called risk-seeking agents, and
others which are inclined not to take risks, also called risk-averse
agents. We model these attitudes using a parametric nonlinear util-
ity function of the reward received by individuals as the result of their
investment in the collective good.

Since we are working with non-linear utility functions in the PGG,
we need to decouple our perspective from the literature on the PGGs
addressing non-linear public good productions. This branch focuses
on settings where the public good results from a non-linear produc-
tion process [41]. These are called non-linear public good games and
allow one to model certain real-world situations (populations of bac-
teria, viruses, or cooperative hunting [12, 39]). In contrast, we shift
our focus to an individual level and capture settings where potentially
different attitudes towards risk can occur within a population.

To model risk attitudes, in our work, we explicitly decouple the
collective versus the individual incentives experienced by the agents,
and parameterize the collective incentive at the individual level. This
choice allows us to model settings where individuals in a population
can have different perceptions regarding these incentives. Further-
more, we take a multi-objective approach to the optimization of these
two levels of rewards, drawing on multi-objective reinforcement
learning (MORL) methods. This allows us to investigate learned be-
haviours that emerge from individually preferred trade-offs between
the cooperative and competitive objectives.
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Contributions. We investigate learning in PGGs where agents have
different risk preferences, modelled as non-linearities over the game
payoffs. We study the interplay between this mechanism and environ-
mental uncertainty from a multi-objective perspective. More specifi-
cally, our contributions are as follows:
1. We propose a novel multi-objective multi-agent (MOMA) en-

vironment based on the extended Public Goods Game (EPGG)
[38], called the Multi-Objective EPGG (MO-EPGG). This envi-
ronment, next to facilitating training agents on games with dif-
ferent levels of incentive alignment, also allows one to explicitly
model the trade-off between the individual and the cooperative
components of PGGs. Moreover, it enables the decoupling of en-
vironmental and social uncertainties, allowing for the analysis of
their impact, both when occurring concurrently or in isolation.

2. We propose a non-linear utility function that allows one to com-
bine the collective and individual rewards, parameterized at the
agent level. The selected shape of the utility function allows us to
model risk-averse and risk-seeking agents, by operating a convex
or concave transformation over the collective game reward, re-
spectively. Moreover, it allows us to model a population of agents
with varying attitudes towards risk.

3. We perform an analysis of the MO-EPGG under different multi-
objective optimisation criteria. In particular, we look at the joint
impact of different risk preferences and incentive alignment levels
on the best responses, the Nash equilibria and the price of anarchy.

4. We perform experiments on a population of independent multi-
objective reinforcement learning agents trained on the MO-EPGG.
We show that risk-averse utility functions strongly diminish coop-
eration in cases with and without uncertainty. In the presence of
environmental uncertainty, risk-seeking utilities improve cooper-
ation in environments where defection is the dominant strategy.

2 Related Work
The related literature can be grouped under two main categories: non-
linear utilities in public good games and multi-objective reinforce-
ment learning. In this section, we describe them respectively.

2.1 Non-Linear Utilities in Public Goods Games

Although the PGG with linear utility functions is the most known
and commonly used, various models of non-linear PGGs have been
proposed in the literature as well. In the threshold public goods game,
the resulting public good is given by a step function of the number
of cooperators: the resource is created only if a minimum fraction of
actors participate in the production of the public good [14]. When the
minimum number of participants is 1, this is called the Volunteer’s
Dilemma [6, 17]. A sigmoid public goods function closely models
many biological systems where the output production is small for low
input levels and bigger for intermediate inputs, decreasing again for
even bigger ones [7, 12]. In other paradigms, public good production
is modelled by applying a concave (convex) function over agents’
contributions, where the produced good is lesser (greater) than the
good provided by a linear function of the contributions.

Several papers focused on analyzing non-linear public good
games, by different means. In [33] authors employ non-linear PGG
with different incentive structures to analyze behavioural subtyping,
i.e., if cooperative behaviour in one task can predict cooperative be-
haviour in another. In [55], evolutionary dynamics techniques are
employed to study the role of different non-linear production func-
tions on the evolution of cooperation in finite populations, while in

[41], the evolutionary dynamics of two different populations collab-
orating for the production of a non-linear public good is investigated.
In [15] authors explore the effects of different non-linear PGGs on
the evolution of cooperation using Darwinian dynamics.

In the aforementioned literature, non-linearities in PGGs are typ-
ically functions that influence the production of the public good. In
our work, however, we take a different perspective by introducing
non-linearities at the level of the individual utilities extracted from
rewards. More specifically, our goal is to model individuals’ attitudes
towards risk. In doing so, we follow decision theory which seeks to
understand human decision processes and derive optimal decision-
making strategies [51, 29, 24], therefore the study of risk and uncer-
tainty has been a central focus. Some studies have shown that people
make decisions based on some subjective function of the investment
they made [48, 18]. For instance, an individual’s risk attitude is often
described as a function of the investment made (x) by means of a
utility function shaped as u(x) = xβ . Here, the parameter β governs
the risk preference of the individual: if 0 < β < 1, the function is
concave, signifying risk-aversion; if β > 1, the function is convex,
indicating a risk-seeking attitude [24]. In our work, we draw on this
idea to formulate a utility function that allows us to model individual
preferences for actors participating in the PGG.

2.2 Multi-Objective Reinforcement Learning

In the field of reinforcement learning, the main focus is often to solve
single-objective problems, by determining the agent’s best policy to
reach a specific goal. However, real-world challenges are of a multi-
objective nature most of the time [45]. Autonomous agents, whether
human or artificial, need to optimize for multiple goals simultane-
ously, or find a trade-off between them. This is the central concept
of multi-objective reinforcement learning (MORL) [23, 45], a field
that has developed rapidly in recent years [2, 54]. In MORL, the core
idea is to receive vector rewards from the environment instead of
scalar rewards. Under the utility-based perspective [23], rewards can
be combined by means of a scalarization function to determine the
final optimisation goal. Often, a linear scalarization function is em-
ployed, which allows the employment of single-objective RL meth-
ods. Alternatively, other choices include monotonically increasing
non-linear scalarization functions [1, 44]. These are of particular in-
terest for our work since non-linear functions are often used to model
utilities under uncertainty and risk, especially in the economics liter-
ature, which aims at modelling human behaviour [33, 50].

Another part of this field of research focuses on fairness, i.e., how
to optimize the trade-off among the objectives of different individu-
als under particular fairness constraints [49, 22, 19]. For example, in
[49], authors employ deep RL techniques to learn a policy that treats
users equitably. We build on the framework developed in [49], but
rather than focusing on the fair treatment of a set of users, we in-
vestigate the effect of uncertainty and individuals’ attitudes towards
risk. To this end, we extend their approach to work with a different
scalarisation function customized for our scenario, which allows us
to model individual preferences, and train independent reinforcement
learning agents in a multi-objective setting. We thus adopt a multi-
objective multi-agent reinforcement learning (MOMARL) [42] per-
spective, which extends MORL to multi-agent scenarios.

3 Preliminaries
This section presents the formal definitions and the background
knowledge. These include the Extended Public Goods Game, the



multi-objective stochastic games and the multi-objective optimiza-
tion criteria.

3.1 The Extended Public Goods Game

The Extended Public Goods Games [36] is a tuple ⟨N, c, A, f,u⟩,
where N is the set of players whose size is denoted as |N | = n ∈ N.
Every player i is endowed with some amount of wealth (or coins)
ci ∈ R≥0, and c = (c1, . . . , cn) denotes the tuple containing all
agents’ coins. Each agent can decide whether to invest in the pub-
lic good (cooperate) or keep the endowment for themselves (defect);
therefore, the set A of allowed actions consists of cooperate (C) and
defect (D) i.e., A = {C,D}. The vector a = (a1, . . . , an) ∈ An

represents the action profile of the agents. The quantity f is called
multiplication factor, and specifies the scalar by which the total in-
vestment is multiplied in order to produce the public good. The re-
sulting quantity is then evenly distributed among all agents. The dif-
ference with respect to the original PGG lies in the interval of al-
lowed values for f . While in the PGG f ∈ (1, n), in the EPGG we
take f ∈ R≥0. The reward function for each agent i is defined as
ri : A

n × R≥0 × Rn
≥0 → R, with:

ri(a, f, c) =
1

n

n∑
j=1

cjI(aj) · f + ci(1− I(ai)), (1)

where aj is the j−th entry of the action profile a and I(aj) is the in-
dicator function, equal to 1 if the action of the agent j is cooperative,
and 0 otherwise, and cj denotes the j−the entry of c. For the sake of
simplicity, in the following, we assume all endowments to be equal,
namely ci = c, ∀i ∈ N .

Depending on the value of f , the EPGG can model three types
of scenarios. When 1 < f < n, like in the classic PGG, we model
mixed-motives scenarios, in which all agents playing defect is a dom-
inant strategy equilibrium. Yet, this profile is Pareto dominated by
the profile in which all agents cooperate. When 0 ≤ f ≤ 1, play-
ing defect is a Pareto optimal dominant strategy (and therefore Nash)
equilibrium. In addition, the EPGG can also model fully cooperative
scenarios (i.e., when f ≥ n) in which the cooperation profile is a
Pareto optimal dominant strategy (and therefore Nash) equilibrium.

3.2 Multi-Objective Stochastic Games

We model the multi-objective multi-agent interactions using the
multi-objective stochastic game (MOSG) framework, defined as the
tuple M = (S,A, T, γ,R), with n ≥ 2 agents and d ≥ 2 objec-
tives, where:
• S is the state space,
• A = A1 × · · · × An is the set of joint actions, with Ai being the

action set of agent i,
• T : S ×A× S → [0, 1] is the probabilistic transition function,
• γ is the discount factor,
• R = R1 × · · · × Rn are the reward functions, where Ri : S ×

A × S → Rd is the vectorial reward function of agent i for each
of the d objectives.1

We take a utility-based perspective [45] for multi-objective decision
making, assuming that each agent i has a utility function ui : Rd →
R that maps the received reward vector to a scalar value, determining
the desired trade-off between the objectives.

1 We note that in this article the terms reward and payoff are synonyms. For
the sake of clarity and consistency, we stick to the former term which aligns
with the reinforcement learning terminology.

3.3 Optimization Criteria

In reinforcement learning, the goal of an agent is to find a policy π
that maximizes the expected scalar return V π = Eπ[

∑∞
t=0 γ

trt].
In MORL, depending on how agents derive their utility, there are
two optimisation criteria one can employ in the scalarisation process
when maximising the expected discounted long-term reward vector:

• The Scalarised Expected Return (SER) criterion:

V π
u = u

(
Eπ

[ ∞∑
t=0

γtrt

])
, (2)

where π : S × A → [0, 1] is the agent’s policy, and rt =
R(st, at, st+1) is the vectorial reward at timestep t.

• The Expected Scalarised Return (ESR) criterion:

V π
u = Eπ

[
u

( ∞∑
t=0

γtrt

)]
(3)

Which one of these criteria to choose depends on the problem at hand
[42]. If we care about the goodness of a single policy execution, ESR
is the correct criterion. If instead, we are interested in the quality of
average policy executions, we should use SER. In this work, we opt
for the SER criterion in the learning, modelling agents that are inter-
ested in optimising their behaviour in repeated interaction settings.

4 Multi-Objective EPGG
We formulate a multi-objective version of the EPGG, called Multi-
Objective Extended Public Goods Game (MO-EPGG), by employing
the framework of multi-objective stochastic games, outlined in Sec-
tion 3.2. In our framework, the state space consists of the value of the
multiplication factor f of the game currently being played, and the
action space coincides with that of the single-objective EPGG (Sec-
tion 3.1). We notice that the transition function for this framework
is simply a random sampling from the set of possible multiplication
factors at the beginning of each episode and deterministically returns
that same f value at all the subsequent steps of the episode.

To complete our multi-objective formulation of the EPGG, we
need to vectorize the scalar reward signal obtained by agents in
the EPGG. This process is called multi-objectivization of single-
objective problems [25, 30]. By observing the form of the reward
function in Equation 1, we can easily distinguish between the part
that defines the collective (rC ) and the individual payoff (rI ):

rCi (a, f, c) =
1

n

n∑
j=1

cjI(aj) · f (4)

rIi (a, c) = ci(1− I(ai)). (5)

Then, in the proposed MO-EPGG, the vectorial reward received
by agent i, given action profile a, current multiplication factor f ,
and a tuple of endowments c, is as follows:

ri(a, f, c) =
(
rCi (a, f, c), rIi (a, c)

)
. (6)

This completes our description of the MO-EPGG as a MOSG with
d = 2 objectives. In Figure 1 we display an example of the vectorial
rewards received by N = 2 agents playing the MO-EPGG for three
different values of the multiplication factor f .

To define the agents’ utility functions, we follow a similar ap-
proach to the incentive structure proposed by Mullett et al. [33], but



note that we employ the non-linear function at an individual level,
to model agents’ risk attitudes as preferences over the received vec-
torial payoff. In particular, in our model, the gain in utility obtained
from the collective reward behaves non-linearly by means of an ex-
ponential function where βi serves as an exponent. Therefore, we
define the following non-linear utility function that specifies the final
scalarised utility for the MO-EPGG agents:

ui(gi) =
(
gCi

)βi + gIi , (7)

with βi being a hyperparameter. In our setting, gC and gI repre-
sent expected returns (or expected discounted sums of rewards), i.e.,
g =

∑
t γ

trt. Note that we are employing expected returns rather
than rewards since we are working under the SER criterion. In this
equation, the parameter βi governs the risk-seeking/averse behaviour
of agent i towards the collective expected return gCi , namely a value
β = 1 returns a linear utility function, while β < 1 generates a con-
cave function (with β > 0) which models a risk-avoiding agent,
while β > 1 generates a convex function which models a risk-
seeking agent [33].

In Equation 7, the exponent is only applied over the collective re-
ward component. This choice is motivated by our conceptualization
of the collective reward as the result of a risky investment. The result
depends on the value of the multiplication factor f , which might not
be known with certainty; and the actions of the other players.

f = 0.5 Player 1
C D

Player 0
C [2, 0], [2, 0] [1, 0], [1, 4]

D [1, 4], [1, 0] [0, 4], [0, 4]

f = 1.5 Player 1
C D

Player 0
C [6, 0], [6, 0] [3, 0], [3, 4]

D [3, 4], [3, 0] [0, 4], [0, 4]

f = 2.5 Player 1
C D

Player 0
C [10, 0], [10, 0] [5, 0], [5, 4]

D [5, 4], [5, 0] [0, 4], [0, 4]

Figure 1: Multi-objective payoff matrices for a 2-players MO-EPGG
with 4 coins for each player, and multiplication factors 0.5, 1.5 and
2.5, when taking the cooperative (C) or defective (D) actions.

4.1 Game Analysis

We analyse the MO-EPGG with the proposed utility function. We
first analyse the MO-EPGG under ESR and SER, to examine the dy-
namics of best responses for different values of the game and utility
function parameters. Second, we investigate the impact of different
values of β and f on the set of Nash equilibria under SER.

ESR. From Equation 7, we can observe that the preference be-
tween the cooperative or defective behaviour in the MO-EPGG de-
pends on the relationship between three values, namely, f , c and
β. In particular, assuming a uniform value of β among the whole
population of agents (βi = β for all i ∈ N ), the collective co-
operative action (aC = (C, . . . , C)) is preferred over the collec-
tive defective action (aD = (D, . . . ,D)) by all the agents when

rC(aC , f, c)
β > rIi (aD, f, c), which is the case when (cf)β > c.

This relationship between the variables induces a shared preference
over collective cooperative behaviour in otherwise defective scenar-
ios (the cases when f < 1). In general, collective cooperation is
preferred over collective defection whenever either of the following
conditions holds:

β <
log(c)

log(cf)
if 0 < cf < 1 (8)

β >
log(c)

log(cf)
if cf > 1. (9)

In the same way, collective defection is preferred over collective
cooperation whenever (cf)β < c.

SER. From this point onwards, we focus on analysing a 2-player
MO-EPGG, under the SER criterion. We determine the minimum co-
operation level of the opponent for which the player’s best response
is to cooperate. We compute this value for different values of f and
β. The results are displayed in Table 1. We note that the minimum
cooperation level of the opponent should be strictly greater than the
value presented in the table, for the best response to be cooperation.

We can observe that, for the game with competitive incentive
alignment (f = 0.5), the best response for each player is to defect
every time the value of β ≤ 2 (i.e., the opponent’s probability to co-
operate cannot be > 1, hence the condition is unattainable). If β > 2
the best response is cooperation whenever the strategy of the oppo-
nent is to cooperate with a probability bigger than the value presented
in the table. For example, for β = 3, the best response is cooperation
whenever the strategy of the opponent is to cooperate with a proba-
bility bigger than 0.6. For β = 4, the threshold moves to 0.4, and to
0.3 for for β = 5. For both the games with f = 1.0 and the game
with a mixed-motive incentive alignment, f = 1.5, the best response
is to defect every time β ≤ 2, and to cooperate otherwise. For a
game with cooperative incentive alignment, the best response is to
cooperate every time β ≥ 1.

Table 1: Minimum value for the cooperation of the opponent for
which the best response strategy of the player is cooperation, com-
puted for different values of f and β.

f
β 0.5 1 2 3 4 5 6

0.5 1. 1. 1. 0.6 0.4 0.3 0.2
1.0 1. 1. 0. 0. 0. 0. 0.
1.5 1. 1. 0. 0. 0. 0. 0.
2.5 1. 0. 0. 0. 0. 0. 0.

NE under SER. To complement the above results, we perform an
analysis of the Nash equilibria for the MO-EPGG played by two
agents under SER. Similar to [31], we sweep through the space of
possible joint strategies and identify the Nash equilibria2 for a set of
games. We select values of f in {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, to cover
a spectrum of competitive, mixed-motive, and cooperative games.
Additionally, we let the value of β span over the interval [0., 3.], to
capture risk-averse, risk-neutral and risk-seeking tendencies. The re-
sults are presented in Figure 2, where we display, for one agent, the
value of the probability of cooperation in the Nash equilibria strategy
as a function of β. We provide the plot for one agent only, since the
corresponding plot for the other agent is identical.

2 To check whether a joint strategy is an equilibrium under SER, we use the
iterated_best_response and verify_nash methods of the Ramo library [46].



Figure 2: The probability of action C for Player 0 under the NE of a
2-player MO-EPGG, for varying values of f and β. The correspond-
ing plot for Player 1 is identical. We note that in the case in which
two mixed-strategy NE are present for the same value of β, the joint
strategies are formed by the two different points present. The strate-
gies of the agents are identical for pure-strategy NE.

From Figure 2 we can observe, for all the games, the coexistence
of two Nash equilibria whenever β < 1. At each of these equilibria,
the joint strategy of the two agents displays the following symmetry:
if one agent defects, they both are better off when the other agent
slightly moves away from full defection. For f < 2 and β > 1 we
observe the existence of an interval of β values in which both mutual
defection and cooperation coexist as Nash equilibria. Based on the
results in Table 1, we notice that for a high enough value of β, even
for f = 0.5, the mutual defection Nash equilibrium will eventually
disappear. Whenever β > 1 and f > 2, as expected, the only Nash
equilibrium is mutual cooperation. We present additional results on
the SER in the Supplementary Material [37].

4.2 Price of Anarchy

To evaluate the goodness of the possible outcomes of the system
against the Nash equilibria of each game in the MO-EPGG (defined
by a specific f value), we adapt the metric known as Price of Anarchy
(PoA) [28, 40]. The PoA is the ratio between the welfare of the sys-
tem in its “best solution”, i.e. social optimum, and the welfare of the
system at its worst NE. Thus, it expresses the potential degradation
factor of the social optimum. We highlight that higher values of the
PoA indicate the existence of possible worst outcomes for the sys-
tem due to agents’ selfishness, in comparison to the social optimum.

On the other hand, a PoA with a value of 1 indicates an overlap be-
tween the social optimum and the worst-case selfish action. To define
the social optimum in our setting, we employ the utilitarian welfare
function, summing the outcomes of the utility functions of the play-
ers3: W (π) =

∑n
i=0 ui(V

π
i ), where V π

i is the expected vectorial
return of player i, under the joint strategy π. Then, the PoA is defined
as follows:

PoA =
maxsW (π)

minπ∈NashW (π)
. (10)

Figure 3: Price of Anarchy for varying values of f and β.
In Figure 3 we display the values of the PoA for a 2-player MO-

EPGG, varying the values of f and β. From the figure, we can ob-
serve that for every f , the value of the PoA is 1 for β < 0.5. This
is due to mutual defection being the only Nash equilibrium and best
welfare point. We can also observe that every f displays a range of
β for which the value of the PoA is greater than 1. This is due to the
presence of a Nash equilibria in mutual defection when the welfare is
instead maximized in mutual cooperation. We can also observe that
the PoA value stabilizes to 1 for every game when β overcomes a cer-
tain threshold, which is dependent on the value of f . This is due to
mutual cooperation being both the strategy that maximizes the wel-
fare and the only Nash equilibrium of the game.

5 Experimental setup
MO-DQN We train independent RL agents by adapting the multi-
objective version of the Deep Q-network (DQN) algorithm [32] de-
scribed in [49], which allows us to optimize policies under the SER
criterion 4Siddique et al. [49] train a DQN to predict a Q-function for
every objective. Therefore, the dimension of the output is |A|×d. We
adjust their approach to work with our scalarization function (Equa-
tion 7). The loss function for MO-DQN can be expressed as follows:

L(θ) = Es,a,s′,r∼D

[(
r + γ Q̂θ′(s

′, a∗)− Q̂θ(s, a)
)2

]
, (11)

where θ and θ′ represent the DQN weights at two different timesteps
of the training. D represents the buffer of stored transitions, and r is
the vector reward. We find the best action a∗ by applying the SER
optimization criterion, namely, by applying our custom scalarization
function u to update the MO-DQN function:5

a∗ = argmaxa∈Au

(
E[r + γ Q̂θ′(s

′, a′)]

)
. (12)

3 In the context of multi-objective games under SER, we cannot apply the
welfare function directly on the payoffs of the matrix game.

4 We stress that the need for function approximation is due to the continuous
input values provided by f .

5 Similar to [49], we compute the expectation of the scalarisation, which is a
lower bound for the SER criterion.



5.1 Experiments

The experiments are run over a pool of N = 20 agents. At each iter-
ation t of the learning process, a multiplication factor ft is sampled
uniformly from the interval [fmin, fmax], where fmin and fmax are cho-
sen such as to include cooperative, competitive, and mixed-motive
games. Afterwards, a subset with M = 4 active agents is randomly
sampled from the pool of N agents, to participate in the game for 10
consecutive rounds. After these interactions, the MO-DQN networks
are updated. Given M = 4, we picked fmin = 0.5 and fmax = 6.5, to
enable agents to engage in competitive, mixed-motive and coopera-
tive games. This enables sampling from a set that contains competi-
tive (f < 1), mixed-motive (1 < f < M ), and cooperative games
(f > M ). Each agent receives as observation the current value of
the multiplication factor—which can be observed with uncertainty—
together with the previous actions taken by each opponent at the pre-
vious time step: oi

t = (f i
obs,a

−i
t−1), where a−i = (aj)j∈M , j ̸= i.

Therefore, each agent learns a policy πi : Oi × Ai → [0, 1], where
Oi is the set of all possible observations of agent i.

We model uncertainty over the observation of the multiplication
factor as Gaussian noise over the value of f , received from the en-
vironment: f i

obs = f + N (0, σ2
i ), where σi is the uncertainty ex-

perienced by agent i. To ensure that the value of the observed mul-
tiplication factor coheres with the set of allowed values of f in the
MO-EPGG, we round up every negative sampled value to 0.

All the experiments are run for 20000 epochs, and results are av-
eraged over 20 runs for every condition. The RMSprop learning rate
is set to λ = 0.001, and γ = 0.99. The action selection mech-
anism is ϵ-greedy, with ϵ = 0.01. The values of the weights are
wC = wI = 1 for all the agents. All the plots show the values of the
average cooperation of the active agents at every evaluation step of
the learning process. The DQN networks are composed of 2 hidden
layers, and ReLU nonlinearities are employed between layers.6

6 Results

We group our empirical results in two categories, namely homoge-
neous preferences, where the value of β is identical for every agent,
and heterogeneous preferences, where each agent i is characterised
by a different βi value. Both categories include experiments with and
without uncertainty on the observation of the multiplication factor f .

6.1 Learning with homogeneous preferences

We first explore the impact of different values of β on the scenarios
with and without uncertainty on the observations. We performed ex-
periments for different values of β, that define a linear (β = 1), a
convex (β > 1) and a concave (β < 1) utility function. In each of
these experiments, β values are identical for every agent. The results
for these experiments are depicted in Figure 4.

The experiments with β = 1 represent the baseline where agents
are playing the linear version of the MO-EPGG. Therefore, in the
games without uncertainty, we observe as expected convergence to
cooperation whenever f > M , convergence to defection whenever
f < 1, and a certain percentage of cooperation when 1 < f < M ,
depending on whether the value of f is closer to a cooperative or a
competitive one. When uncertainty is introduced, cooperation is in-
creased in the competitive and mixed-motive scenarios. This results

6 All the parameters employed to perform the experiments are described in
the Supplementary Material, in [37].

from the concurrent learning on a set of games with different levels
of incentive alignment, as previously observed in [38].

The experiments with β = 0.5 represent a system of risk-avoiding
agents playing the MO-EPGG. This risk preference strongly pushes
the system’s behaviour toward competition across all games. The
result stays consistent across the scenarios with and without uncer-
tainty. This result is consistent with the analytical findings under SER
outlined in Section 4.1: for all the games with different f values, (ϵ-
)collective defection strategies are the only the Nash equilibria.

The experiments with β ≥ 2 induce a system of risk-seeking
agents playing in the MO-EPGG. Here, we observe that the cooper-
ation of the system is drastically increased in all games with respect
to the baseline β = 1. We note that for β = 2 and f = 0.5 agents do
not converge to either cooperation or defection. This outcome aligns
with the existence of both collective cooperation and collective de-
fection as Nash equilibria.

6.2 Learning with heterogeneous preferences

Secondly, we investigate the impact of learning in the MO-EPGG
when the agents’ preferences βi are heterogeneous, i.e., the value of
βi for every agent i is sampled from a normal distribution centred in
1, i.e. βi ∼ N (µβ , σ

2
β) ∀ i ∈ N , with µβ = 1. This allows us to

get more values centred around risk neutrality, and few extreme risk-
averse or risk-seeking tendencies. We performed experiments with
different values of σβ , i.e., 0.5, 2 and 3. The resulting system repre-
sents a population where every individual has a different risk prefer-
ence and is centred on risk-neutrality (β = 1).

Figure 5 reports the results for the scenarios without (top row)
and with (bottom row) uncertainty on the observations. We can
observe that when the σβ of the distribution is small (i.e. σβ =
0.5) and no uncertainty is introduced, the competitive equilibria for
f ∈ {0.5, 1.5} is maintained, while the cooperative equilibria for
f ∈ {3.5, 6.5} is lost. We also notice that the higher the value of σβ ,
the higher the average cooperation of the system in all the games.
This result signals the importance of the magnitude of beta on the
risk attitude: the higher β, the higher the risk appetite, which in our
case translates to more cooperative behaviour.

When uncertainty is introduced, we observe that cooperation is
increased in the competitive and mixed games with respect to the
cases without uncertainty. This result is consistent with previous find-
ings on the presence of uncertainty in non-cooperative environments
[36, 38]. Interestingly, only the non-cooperative games are affected
by the presence of uncertainty: in the cooperative games, the average
cooperation of the system is equal to the one observed in the scenario
without uncertainty.

6.3 Equilibria and Learning

We compare now our experimental results with the analysis from
Section 4.1. We underline that, while the computation of equilibria is
game-specific, the outcomes of the experiments result from concur-
rent learning on the set of environments modeled by the MO-EPGG.

Comparing the plots in Figure 4 and the analytical results of the
Nash equilibria from Figure 2, we can observe that, in the case
without uncertainty, in all the games for which f ̸= 0.5, namely
f ∈ {1.5, 3.5, 6.5}, the pool of agents learns the best response,
which means that the system converges to the Nash equilibrium.
Only for β = 1 the convergence is not perfect. In the case f = 0.5,
the agents converge to defection when β < 2, while for β ≥ 2 they
cooperate with a certain probability, which is higher for higher β



(a) f = 0.5 (b) f = 1.5 (c) f = 3.5 (d) f = 6.5

Figure 4: Average cooperation values for the active DQN agents trained across environments with different multiplication factors, without (top
row) and with uncertainty (bottom row) on the observed multiplication factor, with σi = 2, ∀ i ∈ N . The different values of β are identical
for every agent βi = β, ∀ i ∈ N .

(a) f = 0.5 (b) f = 1.5 (c) f = 3.5 (d) f = 6.5

Figure 5: Average cooperation values for the active DQN agents trained across environments with different multiplication factors, without (top
row) and with uncertainty (bottom row) on the observed multiplication factor, with σi = 2 ∀ i ∈ N . The values of β are randomly sampled
from a normal distribution βi ∼ N (µβ , σ

2
β) ∀ i ∈ N , with µβ = 1 and three different values of σβ = 0.5, 2, 3.

values. This result is not surprising given the presence of more than
one Nash equilibrium. When uncertainty is introduced, as previously
mentioned, the average cooperation of the system increases.

7 Conclusions and Future Work
In this work, we introduced and analyzed a multi-objective variant
of the Extended Public Goods Game, the MO-EPGG, which allowed
us to model individual risk attitudes, by decoupling the collective
and the individual payoffs. We investigated the role of misalignment
of incentives, uncertainty and individual risk preferences on coop-
eration, utilising multi-objective reinforcement learning. In partic-
ular, we observed how risk-averse attitudes can increase defection
in cooperative environments, and, inversely, risk-seeking ones, can
increase cooperation in competitive and mixed-motive games, espe-
cially when uncertainty is introduced. Moreover, we observed how a
population with heterogeneous risk attitudes, centred on risk neutral-
ity, can fail to reach cooperation in cooperative settings.

Future work will explore additional MORL approaches, such as
policy-gradient methods, in the MO-EPGG. We also plan to inves-
tigate the interplay between risk preferences, uncertainty, reputation
mechanisms and social norms. Last but not least, we plan to explore
adaptive risk attitudes [52] and their impact on the learning dynamics
and cooperation levels in our setting.
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