
Hierarchical Algorithms for Regret Minimizing Sets
Sabine Storandta,* and Carina Truschela,**

aUniversity of Konstanz, Germany
ORCID (Sabine Storandt): https://orcid.org/0000-0001-5411-3834, ORCID (Carina Truschel):

https://orcid.org/0009-0009-7582-7209

Abstract. Regret minimizing algorithms tackle the problem of find-
ing representative subsets for large data sets whilst optimizing for
multiple objectives. This is done by minimizing the regret of any
possible user with respect to the objectives. The regret is measured
as the distance between the best-suited point for the user in the subset
and the best-suited point for the user in the entire data set. We intro-
duce the novel hierarchical regret minimizing set algorithm (HRMS)
using the divide and conquer paradigm to efficiently approximate re-
gret minimizing sets in arbitrary dimension. The HRMS algorithm
arranges a pre-existing regret minimizing algorithm in a hierarchy
to obtain intermediate regret minimizing sets which are merged un-
til the final solution set is obtained. Further, we introduce the Pareto
post-processing technique which replaces dominated points in the
output set of any given regret minimizing algorithm. Our experiments
on generated data and benchmark data sets in up to 30 dimensions
show that the novel HRMS algorithm significantly outperforms the
state-of-the-art in terms of the solution quality whilst yielding similar
practical running times.

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

D

Divide

Regret Minimizing
Algorithm

Merge

18 hierarchical regret minimizing algorithm

of points. Since we have x depth layers, the merging of pairs is per-
formed x times until depth i = 1 where the final regret minimizing
set of size r is the result of the last merge.

Algorithm 3: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 < r.

2 Divide set D into 2x subsets, each containing at least r + 1

points.
3 for each subset S ✓ D do
4 R = CUBE(S)

5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)

9 Add RM to the list of intermediate sets in depth i- 1.

10 Define R as the intermediate set in depth 0.
11 return R

RMS

RMS

RMS

Divide

Regret Minimizing
Algorithm

Merge

Figure 1. High level schema describing the procedure of the hierarchical
regret minimizing algorithm. The input set is divided into smaller subsets for
which we obtain regret minimizing sets by applying a known regret minimiz-
ing algorithm. The intermediate solution sets are merged in pairs using a filter
until the final output set is obtained.

1 Introduction

Computing regret minimizing sets involves finding subsets that rep-
resent the entire data set such that the happiness of all possible users

∗ Corresponding Author. Email: sabine.storandt@uni-konstanz.de
∗∗ Corresponding Author. Email: carina.truschel@uni-konstanz.de

is maximized. In other words, we choose a set of points from the data
set to minimize the user’s regret when deciding for a point from the
subset instead of deciding for one from the entire data set.

Consider the following example where Alice is looking to buy a
new laptop online. In order to find the laptop which suits her pref-
erences best (e.g. considering the objectives price, screen quality,
CPU, and battery life) she would need to spend countless hours of
searching the world wide web. Fortunately, an online shop provides
a small selection of good laptops where she simply decides for the
best-suited laptop according to her preferences. The goal of the on-
line shop is to present for example 10 laptops to Alice such that she
does not regret deciding for one laptop among the offered ones even
if she would know every single laptop currently on the market. Al-
ice’s regret is measured as the ratio of perceived suitability of the
laptop from the online shop and the best-suited laptop in the world.
Ideally, she finds that both laptops fulfill her requirements and she
does not regret deciding for the one from the online shop. To ensure
customer satisfaction, the online shop needs to provide a selection of
laptops such that every possible user, not just Alice, finds a suitable
laptop and none of the users regret buying from the online shop even
if they knew all other available options.

In general, given a data set, we define the regret minimizing set
as the subset representing the entire data set such that every possi-
ble user is sufficiently happy with being limited to the options in the
subset during the decision making process. Our proposed algorithm
uses the hierarchical schema depicted in Figure 1 to efficiently iden-
tify such representative, small subsets in higher dimensions whilst
minimizing the regret of any possible user.

1.1 Related Work

Nanongkai et al. [4] introduced the regret minimizing set problem
(RMS) in 2010. In the past years, several versions of the problem
and different algorithms have been presented. The survey done by
Xie et al. [8] provides an extensive overview of various aspects of
the regret minimization problem. Firstly, we differentiate between
the RMS and the kRMS problem. The former tackles finding rep-
resentative subsets that minimize the regret of any user towards the
best-suited point in the subset and the best-suited point in the entire
data set. Whereas the latter relaxes the requirement to minimizing
the regret of any user towards the best-suited point in the subset and
the kth-best-suited point in the data set. Throughout this work we
implicitly use k = 1 and simply denote RMS instead of 1RMS.

Chester et al. [3] prove that both the 1RMS and the kRMS prob-
lems are NP-hard by constructing a reduction from the SET-COVER

https://orcid.org/0000-0001-5411-3834
https://orcid.org/0009-0009-7582-7209

problem to the 1- and k-regret minimization problems, respectively.
Extending these findings, Agarwal et al. [1] conclude that the kRMS
problem is NP-complete for instances with at least d ≤ 3 dimen-
sions. Hence, the approaches for the RMS problem are subdivided
into exact algorithms for two dimensions and heuristic or approxi-
mation algorithms for d dimensions.

The Contour algorithm by Chester et al. [3] was the first exact ap-
proach for the kRMS problem in two dimensions. Using dynamic
programming, the authors find a solution subset of size r by trans-
forming the kRMS problem into a geometric problem in dual space.
The algorithm proceeds with finding a convex chain closest to the
top-k rank contour. The BiSearch algorithm by Cao et al. [2] is a
randomized binary search algorithm based on the same transforma-
tion into dual space. Performing binary searches on candidate values
of regret ratios that might be optimal leads to an improvement in
running time compared to the Contour algorithm.

Heuristic algorithms tackle the NP-hard kRMS problem in arbi-
trary dimension without offering a theoretical guarantee on the regret
ratio. The Greedy algorithm by Nanongkai et al. [4] is based on linear
programming and similar to the approaches by Chester et al. [3] and
Qiu et al. [6]. Using an LP, the algorithms greedily add points to the
solution subset until reaching the specified output size. On the other
hand, the GeoGreedy algorithm by Peng et al. [5] greedily derives a
solution subset with geometric computations.

Lastly, the approximation algorithms provide solution subsets to
the kRMS problem in arbitrary dimensions alongside a theoretical
bound on the resulting regret ratio. Nanongkai et al. [4] introduce the
efficient Cube algorithm tackling the 1RMS problem. The algorithm
partitions the multi-dimensional space into hypercubes by construct-
ing t = ⌊(r − d + 1)d−1⌋ equally-sized intervals in the first d − 1
dimensions. From each hypercube the point having the highest value
in the last dimension is added to the solution subset. Thus, the Cube
algorithm returns a subset of size at most r and a regret ratio of at
most d−1

t+d−1
. The running time of the Cube algorithm is in O(rnd)

with the space consumption being in O(rd+n). Further, the Sphere
algorithm by Xie et al. [7] improves the guarantee of the Cube al-
gorithm by sampling a set of utility functions in order to find points
with high scores on them. The authors ensure that the solution subset
contains a point which is similar to the best-suited point in the entire
data set for each utility function. Similarly, the HittingSet approach
introduced by Agarwal et al. [1] samples utility functions and reduces
the kRMS problem to the hitting set problem. Using an already ex-
isting algorithm, the authors solve the corresponding instance of the
hitting set problem and produce the smallest subset not exceeding a
given regret ratio.

1.2 Contribution

In this work, we propose the novel hierarchical regret minimizing
algorithm HRMS approximating regret minimizing sets in arbitrary
dimension. The divide and conquer approach partitions the input set
into smaller subsets and applies a pre-existing regret minimizing al-
gorithm on each of the subsets to obtain intermediate regret min-
imizing sets. These sets are then merged in a hierarchical manner
until only the final regret minimizing set remains. The hierarchical
regret minimizing algorithm allows for user-defined adjustments to
its hierarchy in order to influence the practical running time and so-
lution quality of the HRMS algorithm. Furthermore, we introduce a
post-processing technique based on Pareto-optimal points which effi-
ciently improves the solution quality of the output of any given regret
minimizing algorithm.

2 Preliminaries
We consider sets of multi-dimensional points with each point hav-
ing a non-negative attribute value per dimension. More formally, we
define a set D of size n ∈ N in d dimensions consisting of points
p = (p1, . . . , pd) ∈ Rd

+ where pi denotes the value in the ith di-
mension. Figure 2 depicts an example data set D of size n = 6
in two dimensions. Modeling the user is done by defining a weight
vector w = ⟨w1, . . . , wd⟩ ∈ Rd

+ according to the user’s prefer-
ence in each dimension. Further, we define the user’s utility func-
tion as the dot product of each point p ∈ D and the weight vec-
tor w. The score of a point p ∈ D w.r.t. the weight vector w is
score(p, w) = p ·w =

∑d
i=1 piwi. In Figure 2 we consider only the

weight vector of one specific user, namely w = ⟨0.5, 0.5⟩. The score
of each point in D w.r.t. w is given in the table on the right.

Weights, Score, Rank

20

Rank
$th ranked point) ∈ ! on %:

!((,*)

!

- !,# = '!
- $,# = '$
- %,# = '%
- &,# = '&
- ',# = ''
- (,# = '(

"

#

!!

!"

!#

!$

!%

!& p1
i p2

i score(pi, w)
p1 1.0 6.0 3.50
p2 2.0 3.0 2.50
p3 3.5 5.0 4.25
p4 4.5 7.5 6.00
p5 6.0 2.0 4.00
p6 7.0 6.0 6.50

2

Figure 2. Two-dimensional data set D of size n = 6 with the user weight
vector w depicted on the left. The table shows the values in the 1st and 2nd

dimension together with the score of each point on the weight vector w.

Based on the score we construct a descending ordering on D
such that the first ranked point is the one having the highest score
in D. Accordingly, we denote the kth ranking point in D on the
weight vector w as D(k,w). The ordering on D in Figure 2 is
(p6, p4, p3, p5, p1, p2) indicating that p6 = D(1,w is the highest
ranking point with respect to w.

Regarding a subset R ⊆ D of points, we define its gain as
the score of the highest ranking point in R with respect to w
as gain(R,w) = score(R(1,w), w). Consider the subset R =
{p1, p3, p4} ⊆ D in Figure 2, the gain(R,w) is equal to the score of
the highest ranked point in R w.r.t. the weight vector w which is p4.

Measuring how closely a subset R approximates the data set D for
a given user w is done by considering the gain of the subset relative
to the gain of the entire set. In other words, we compare the user’s
happiness with the best-ranking option in the subset R with the best
choice in the entire data set D. The following distance metric called
regret ratio captures exactly this.

Definition 1 (Regret Ratio). Given a subset R ⊆ D and a weight
vector w, the regret ratio is

regret ratio(R,w) =
max(0, gain(D,w)− gain(R,w))

gain(D,w)

For the subset R = {p1, p3, p4} we obtain a regret ratio(R,w) =
0.0769 as point p6 is the highest ranking in D and point p4 is the
highest ranking in R. In other words, the user described by the weight
w has a low regret when choosing a point from the subset R instead
of choosing one from D.

Concerning the RMS problem, we aim at minimizing the regret of
the most unhappy user among all possible users. Therefore, we define
the maximum regret ratio of a subset R as the regret ratio of the most
unhappy user among all possible user weight vectors w ∈ [0, 1]d.

Definition 2 (Maximum Regret Ratio). Let L denote all vectors in
[0, 1]d. The maximum regret ratio of a subset R ⊆ D is

regret ratio(R) = sup
w∈L

regret ratio(R,w)

For the example subset R the regret ratio is regret ratio(R) =
0.351 hence there exists at least one user w′ for which the
regret ratio(R,w′) = 0.351. The user w′ produces the maximum
such ratio among all possible users and is the most unhappy one in
our scenario.

Finally we define a regret minimizing set Rr,D as the subset R ⊆
D of size r having the smallest regret ratio among all subsets of the
same size.

Definition 3 (Regret Minimizing Set). A regret minimizing set of size
r on a data set D is

Rr,D = argmin
R⊆D,|R|=r

regret ratio(R)

Since the maximum regret ratio of the subset R is equal to 0.351
it is most likely not optimal. Instead, we aim to find a regret mini-
mizing set of size 3 on the data set D. To this end, we compute the
maximum regret ratio of all 20 possible subsets R′ ⊆ D of size 3.
Among which we select the one with the smallest maximum regret
ratio, namely R′ = {p1, p4, p6}. The subset R′ has a maximum re-
gret ratio of zero, consequently it is a regret minimizing set of size 3
on the data set D.

Definition 4 (RMS Problem). Given a data set D of n points in d
dimensions and a non-negative integer r, return a regret minimizing
set of size r on D.

3 Hierarchical Regret Minimizing Algorithm
The hierarchical regret minimizing set algorithm (HRMS algorithm)
follows the divide and conquer paradigm to efficiently compute a
representative subset approximating the RMS problem in arbitrary
dimension. Figure 1 depicts the high-level schema of the HRMS al-
gorithm partitioned into a dividing phase, the application of a regret
minimizing algorithm and a merging phase.

Firstly, the input set is recursively divided into sufficiently small
subsets in order to conquer any large data set. For each of the subsets
we use an already existing regret minimizing algorithm to obtain re-
gret minimizing sets (short RMS) of a fixed size. Lastly, the HRMS
algorithm merges pairs of regret minimizing sets in a hierarchical
structure until only one set remains. The merging is done by filter-
ing a subset of points from the pair of regret minimizing sets thus
maintaining a fixed output size throughout the hierarchy.

The input to Algorithm 1 is a data set D consisting of n points
in d dimensions and a non-negative integer r indicating the output
size. In order to use any regret minimizing algorithm during the con-
quer phase, we define the maximum depth x of the hierarchy such
that each of the 2x subsets contains at least r + 1 points. Otherwise,
applying an RMS algorithm to compute a regret minimizing set of
size r is superfluous as we could simply choose all points within the
subset. Using said RMS algorithm on all 2x subsets, we obtain 2x

regret minimizing sets of size r. The HRMS algorithm continues by
merging the regret minimizing sets in pairs of two in each layer of
the hierarchical structure depicted in Figure 1. During the merge, the
output size r remains as we do not want to further decrease the num-
ber of points. Since we have x depth layers, the merging of pairs is

Algorithm 1: Hierarchical Regret Minimizing Algorithm

1 Define the maximum depth x such that n
2x+1 ≤ r.

2 Divide D into 2x subsets, each containing at least r + 1
points.

3 for each subset S ⊆ D do
4 R = RMS(S)
5 Add R to the list of intermediate sets in depth x.

6 for each depth i = x, . . . , 1 do
7 for each pair of intermediate sets RA and RB do
8 RM = MERGE(RA, RB)
9 Add RM to the list of intermediate sets in depth i− 1.

10 Define R as the intermediate set in depth 0.
11 return R

performed x times until depth i = 1 where the final regret minimiz-
ing set of size r results from the last merge.

Considering the running time of the HRMS algorithm, dividing
the input set of size n into 2x subsets is done in O(n). Let tRMS

be the running time of the chosen RMS algorithm executed on the
subset S of size r. The RMS algorithm is executed on each of the
2x subsets thus it requires O(2x · tRMS) time. Let tMERGE be the run-
ning time of the chosen merging technique for merging intermediate
sets RA and RB each of size r. At depth i we merge 2i intermedi-
ate sets in pairs of two. Hence, we merge 2i−1 pairs at each depth
i = x, . . . , 1. Overall the merging of pairs of intermediate sets is in
O(2x · tMERGE). The total running time of the HRMS algorithm is
in O(n+ 2x · (tRMS + tMERGE)). However, note that the height x of
the hierarchy is in O(logn) due to the recursive splitting into two
halves. Hence, the term 2x is in O(n).

Let sRMS be the space consumption of the chosen RMS algorithm
once executed on the subset S and let sMERGE be the space consump-
tion of the selected merging technique. Maintaining the 2x subsets
during the divide phase is in O(n). Executing the RMS algorithm
on all subsets requires O(2x · sRMS) space and the merging phase
requires O(2x · sMERGE) space. Consequently, the space consumption
of the HRMS algorithm is in O(n+ 2x · (sRMS + sMERGE)).

3.1 Merging of Intermediate Regret Minimizing Sets

During the merging phase, we repeatedly combine regret minimiz-
ing sets RA and RB each of size r to form a new regret minimizing
set RM of size r. Therefore, we need to select r points from the
union RA ∪ RB whilst not compromising the regret ratio of RM . A
naive approach would be to randomly sample r points from the union
RA∪RB to form the set RM during one merging step. This approach
works efficiently on any given input but does not provide the best ap-
proximation for the regret ratio. On the other hand, since we already
used an RMS algorithm to obtain the intermediate sets RA and RB ,
we can simple rerun said RMS algorithm on the union RA ∪ RB to
obtain the set RM of size r. However, in practice this merging tech-
nique increases the running time of the HRMS algorithm heavily and
thus is not recommend. Instead, we propose the sorted merge which
uses the observation in Section 2 that points rank higher for a specific
user weight vector if their values in each dimension are higher than
the values of other points. For arbitrary dimension d we conclude
that points having high values in either one of the d dimensions are
more likely to rank higher for any user weight vector than points hav-
ing lower values in the same dimension. The sorted merge initially
sorts RA and RB decreasingly in each of the d dimensions. Then,

the first ⌊ r
2d
⌋ points from the sets RA and RB corresponding to the

decreasing order in the first dimension are retrieved. This procedure
is repeated for each dimension and we obtain the set RM consisting
of at most r points. The sorted merge efficiently merges two RMS
as we only sort sets of size r which is typically much smaller than
the input size n. Additionally, we select the most promising points
in each dimension such that as many users as possible retrieve high
scores from points in RM leading to a lower regret ratio.

3.2 Suggested Configuration of the HRMS Algorithm

The depth x of the hierarchical framework is defined by the user such
that for an input of x = 0 the HRMS algorithm is performed with
the maximum depth defined in Algorithm 1. For any input x > 0,
the hierarchy is trimmed to the specified depth. For the RMS al-
gorithm used within the framework of HRMS we choose the Cube
algorithm described in Section 1.1 due to its efficient running time
in arbitrary dimension and approximation guarantee. Lastly, for the
merging phase we select the sorted merge described in Section 3.1.

The running time of the Cube algorithm when executed on in-
put sets of size n

2x
to obtain intermediate regret minimizing sets is

tRMS ∈ O(r n
2x

d) with the space consumption sRMS ∈ O(rd). The
sorted merge sorts the intermediate RMS of size r in each dimension
using MergeSort, thus the running time is tMERGE ∈ O(dr log r) and
the space consumption sMERGE ∈ O(r).

Consequently, for the proposed configuration of HRMS the run-
ning time is in O(rnd+2xdr log r) with the space consumption be-
ing in O(n+ 2xrd). As mentioned previously, the term 2x ∈ O(n).

4 Pareto Post-Processing
We propose a post-processing technique based on Pareto-optimal
points that is applicable on the output of any regret minimizing al-
gorithm. A point p dominates another point q if the value of p in
each dimension is equal or higher than the value of q and if p has
a higher value than q in at least one dimension. If the point p is not
dominated by any other point q in the data set D, then p is a Pareto-
optimal point in D. The set of all non-dominated points is then called
a Pareto set.

Consider the example data set D = p1, . . . , p6 in Figure 3 where
only two points are Pareto-optimal, namely p4 and p6. Any points
situated in the blue shaded regions are dominated by either p4 and/or
p6. For example, the point p1 is dominated by p4 due to p4 having
higher x- and y-values. On the other hand, point p6 has the same y-
value as p1 but the x-value of p6 is higher than the one of p1. Thus,
p1 is also dominated by p6. Since p4 p6 do not dominate each other
and are not dominated by any other points in D, the set {p4, p6} is
the Pareto set in D.

Based on the aforementioned definition, we conclude that for any
user weight vector w the point p with the highest score(p, w) is
equally as good as all other points in all dimensions and additionally,
p is superior to all other points in at least one dimensions leading to
a higher score. Therefore, the point p having the highest score for
the user defined by w is Pareto-optimal. Since this property holds
for all possible user weight vectors, it seems reasonable to extract all
Pareto-optimal points from the data set to form an ideal regret mini-
mizing set with a maximum regret ratio of zero. In Figure 3 the Pareto
set {p4, p6} provides the best choice for any possible user and thus
we could simply return the Pareto set as the regret minimizing set.
However, this approach has the following two shortcomings render-
ing it unsuitable for the RMS problem. Firstly, the size of the Pareto

6
PA R E T O P O S T- P R O C E S S I N G

In the following chapter, we introduce a post-processing technique
based on Pareto-optimal points in the regret minimizing set result-
ing from an RMS algorithm. To this end, we first explain the notion
of one point dominating another and give an example for Pareto-
optimal points. Further, we describe the Pareto post-processing and
analyze its running time and space consumption.

A point p dominates another point q if the value of p in each dimen-
sion is equal or higher than the value of q and if p has a higher value
than q in at least one dimension. If the point p is not dominated by
any other point q in the dataset D, then p is a Pareto-optimal point
in D. The set of all non-dominated points is then called a Pareto set.
Consider the example in Figure 11, among the set D = {p1, . . . , p6}

only two points are Pareto-optimal, namely p4 and p6. Any points
situated in the blue shaded regions are dominated by either p4 or
p6. For example, the point p1 is dominated by p4 due to p4 having
higher x- and y-values. On the other hand, the point p6 has the same
y-value as p1 however the x-value of p6 is higher, thus p1 is also dom-
inated by p6. Since p4 and p6 do not dominate each other and are not
dominated by any other point in D, the set {p4, p6} is a Pareto set in D.

10 implementation details

ments.

Algorithm 2: Pareto Post-Processing

1 for each point q 2 R do
2 for each point p 2 D do
3 if q is dominated by p then
4 Replace q with p in R.

5 return R

Further, we replace at most r points in R, thus, the output size re-
mains the same after the post-processing, overcoming the issue of
uncontrollable output sizes for the Pareto filter. Additionally, since
the post-processing performs one traversal of the entire dataset D for
each point in R, its running time is in O(rn) which is significantly
better than the running time of O(n2) for the Pareto filter. Especially
as we expect r to be significantly smaller than n in practice as a re-
sult of obtaining small representative subsets. Due to its simplicity,
the Pareto post-processing is suitable for any regret minimizing algo-
rithm e.g. Cube and HRMS.

p1

p2

p3

p4

p5

p6

x

y

w

10 implementation details

ments.

Algorithm 2: Pareto Post-Processing

1 for each point q 2 R do
2 for each point p 2 D do
3 if q is dominated by p then
4 Replace q with p in R.

5 return R

Further, we replace at most r points in R, thus, the output size re-
mains the same after the post-processing, overcoming the issue of
uncontrollable output sizes for the Pareto filter. Additionally, since
the post-processing performs one traversal of the entire dataset D for
each point in R, its running time is in O(rn) which is significantly
better than the running time of O(n2) for the Pareto filter. Especially
as we expect r to be significantly smaller than n in practice as a re-
sult of obtaining small representative subsets. Due to its simplicity,
the Pareto post-processing is suitable for any regret minimizing algo-
rithm e.g. Cube and HRMS.

p1

p2

p3

p4

p5

p6

x

y

w

10 implementation details

ments.

Algorithm 2: Pareto Post-Processing

1 for each point q 2 R do
2 for each point p 2 D do
3 if q is dominated by p then
4 Replace q with p in R.

5 return R

Further, we replace at most r points in R, thus, the output size re-
mains the same after the post-processing, overcoming the issue of
uncontrollable output sizes for the Pareto filter. Additionally, since
the post-processing performs one traversal of the entire dataset D for
each point in R, its running time is in O(rn) which is significantly
better than the running time of O(n2) for the Pareto filter. Especially
as we expect r to be significantly smaller than n in practice as a re-
sult of obtaining small representative subsets. Due to its simplicity,
the Pareto post-processing is suitable for any regret minimizing algo-
rithm e.g. Cube and HRMS.

p1

p2

p3

p4

p5

p6

x

y

w

10 implementation details

ments.

Algorithm 2: Pareto Post-Processing

1 for each point q 2 R do
2 for each point p 2 D do
3 if q is dominated by p then
4 Replace q with p in R.

5 return R

Further, we replace at most r points in R, thus, the output size re-
mains the same after the post-processing, overcoming the issue of
uncontrollable output sizes for the Pareto filter. Additionally, since
the post-processing performs one traversal of the entire dataset D for
each point in R, its running time is in O(rn) which is significantly
better than the running time of O(n2) for the Pareto filter. Especially
as we expect r to be significantly smaller than n in practice as a re-
sult of obtaining small representative subsets. Due to its simplicity,
the Pareto post-processing is suitable for any regret minimizing algo-
rithm e.g. Cube and HRMS.

p1

p2

p3

p4

p5

p6

x

y

w

10 implementation details

ments.

Algorithm 2: Pareto Post-Processing

1 for each point q 2 R do
2 for each point p 2 D do
3 if q is dominated by p then
4 Replace q with p in R.

5 return R

Further, we replace at most r points in R, thus, the output size re-
mains the same after the post-processing, overcoming the issue of
uncontrollable output sizes for the Pareto filter. Additionally, since
the post-processing performs one traversal of the entire dataset D for
each point in R, its running time is in O(rn) which is significantly
better than the running time of O(n2) for the Pareto filter. Especially
as we expect r to be significantly smaller than n in practice as a re-
sult of obtaining small representative subsets. Due to its simplicity,
the Pareto post-processing is suitable for any regret minimizing algo-
rithm e.g. Cube and HRMS.

p1

p2

p3

p4

p5

p6

x

y

w

10 implementation details

ments.

Algorithm 2: Pareto Post-Processing

1 for each point q 2 R do
2 for each point p 2 D do
3 if q is dominated by p then
4 Replace q with p in R.

5 return R

Further, we replace at most r points in R, thus, the output size re-
mains the same after the post-processing, overcoming the issue of
uncontrollable output sizes for the Pareto filter. Additionally, since
the post-processing performs one traversal of the entire dataset D for
each point in R, its running time is in O(rn) which is significantly
better than the running time of O(n2) for the Pareto filter. Especially
as we expect r to be significantly smaller than n in practice as a re-
sult of obtaining small representative subsets. Due to its simplicity,
the Pareto post-processing is suitable for any regret minimizing algo-
rithm e.g. Cube and HRMS.

p1

p2

p3

p4

p5

p6

x

y

w

10 implementation details

ments.

Algorithm 2: Pareto Post-Processing

1 for each point q 2 R do
2 for each point p 2 D do
3 if q is dominated by p then
4 Replace q with p in R.

5 return R

Further, we replace at most r points in R, thus, the output size re-
mains the same after the post-processing, overcoming the issue of
uncontrollable output sizes for the Pareto filter. Additionally, since
the post-processing performs one traversal of the entire dataset D for
each point in R, its running time is in O(rn) which is significantly
better than the running time of O(n2) for the Pareto filter. Especially
as we expect r to be significantly smaller than n in practice as a re-
sult of obtaining small representative subsets. Due to its simplicity,
the Pareto post-processing is suitable for any regret minimizing algo-
rithm e.g. Cube and HRMS.

p4

p5

p2

p3

p4

p5

p6

x

y

w

10 implementation details

ments.

Algorithm 2: Pareto Post-Processing

1 for each point q 2 R do
2 for each point p 2 D do
3 if q is dominated by p then
4 Replace q with p in R.

5 return R

Further, we replace at most r points in R, thus, the output size re-
mains the same after the post-processing, overcoming the issue of
uncontrollable output sizes for the Pareto filter. Additionally, since
the post-processing performs one traversal of the entire dataset D for
each point in R, its running time is in O(rn) which is significantly
better than the running time of O(n2) for the Pareto filter. Especially
as we expect r to be significantly smaller than n in practice as a re-
sult of obtaining small representative subsets. Due to its simplicity,
the Pareto post-processing is suitable for any regret minimizing algo-
rithm e.g. Cube and HRMS.

p4

p6

p2

p3

p4

p5

p6

x

y

w

Figure 11: In the example two points are Pareto-optimal (yellow), namely
p4 and p6. The other four points lie within the blue shaded re-
gions and thus are dominated by either one or both of the Pareto-
optimal points.

Based on the aforementioned definition, we conclude that for any
user weight vector w the point p with the highest score(p, w) is equally
as good as all other points in all dimensions and additionally, p is

31

Figure 3. In this example data set D two points are Pareto-optimal (yellow),
namely p4 and p6. The other four points lie within the blue shaded regions
and thus are dominated by either one or both of the Pareto-optimal points.

set is not fixed and in the worst case the entire data set might be
Pareto optimal. Thus, the Pareto set would not provide a sufficiently
small subset to represent the entire data set. Secondly, determining
all Pareto-optimal points in a data set, in the form of a Pareto filter,
is costly as we need to compare each point to all other points. There-
fore, computing the Pareto set of a given data set is not applicable for
the regret minimization problem in practice.

The following post-processing technique in Algorithm 2 based on
Pareto-optimal points overcomes the deficiencies of the aforemen-
tioned Pareto filtering. Given a regret minimizing set R, we traverse
all points q ∈ R and determine if q is dominated by some point
p ∈ D. If we find a better choice in D in the form of the point p, we
simply replace the point q by the point p within the regret minimizing
set R. We continue traversing D with this newly determined point p.
After one iteration for a given point q ∈ R, we either know that q is
Pareto-optimal in D and it remains in R or it is replaced by a Pareto-
optimal point from D. Hence, this post-processing technique ensures
that the resulting set contains only Pareto-optimal points. Since p
dominates q, the maximum regret ratio of R does not increase and
replacing q with p in the set R does not worsen its solution quality.

Algorithm 2: Pareto Post-Processing

1 for each point q ∈ R do
2 for each point p ∈ D do
3 if q is dominated by p then
4 Replace q with p in R.

5 return R

Further, we replace at most r points in R, thus, the output size
does not increase during the post-processing, overcoming the issue
of uncontrollable output sizes for the Pareto filter. It is worth men-
tioning, that one dominating point that replaces a dominated point in
R might also dominate other points in R. In this case, the dominating
point is only added once and the output size decreases. However, the
shrinking of the output set due to replacing several dominated points
by one dominating point is acceptable for RMS problems since we
want to find small representative subsets.

Since the post-processing performs one traversal of the entire data
set D for each point in R comparing the values in all d dimensions,
its running time is in O(rnd) which is significantly better than the
running time of O(dn2) for the Pareto filter. Since the Pareto post-

processing works directly on the solution set but requires the entire
data set to determine dominating points, its space consumption is in
O(n).

Due to its simplicity, the Pareto post-processing is suitable for
the approximate regret minimizing algorithms Cube and HRMS dis-
cussed in this work but also the Sphere [7] algorithm and the Hitting
Set [4] approach described in Section 1.1.

5 Experimental Evaluation

We implemented the HRMS algorithm according to the configura-
tion described in Section 3.2 and the Cube algorithm [4] in C++. The
experiments were conducted on a single core of a 4.5 GHz AMD
Ryzen 9 7950X 16-Core Processor with 188 GB of RAM. Running
times and regret ratios are always averaged over 100 generated in-
stances per tested value of n.

5.1 Approximating the Regret Ratio

In order to evaluate the solution quality of the HRMS algorithm,
we need to obtain the maximum regret ratio of the solution subset
R ⊆ D among all possible user weight vectors as described in Defi-
nition 2. To this end, we uniformly sample 1, 000 user weight vectors
w ∈ [0, 1]d ensuring that the extreme values 0.0 and 1.0 are repre-
sented at least once in each dimension. We approximate the maxi-
mum regret ratio of a subset R by computing the regret ratio(R,w)
for each sampled vector w and extract the maximum among all
weight vectors. In Figure 4 we experimentally explore the effect of
the sample size of user weight vectors on the resulting approximated
regret ratio of a given subset R. We conclude that the obtained re-
gret ratios are sufficiently similar even when comparing samples of
size 100 and 100, 000. Since computing the regret ratio for a given
user weight vector involves traversing the entire input set D, we use
a sample size of 1, 000 to efficiently approximate the regret ratio
for our experiments. Agarwal et al. [1] use a similar approach by
randomly sampling 20, 000 user weight vectors to approximate the
regret ratio of a given subset. Note that whenever we compare the
regret ratios of multiple algorithms, the same sample of user weight
vectors is used for all considered solution subsets to ensure compa-
rability of the obtained regret ratios.

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e7

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

Re
gr

et
 R

at
io

Approximating the Regret Ratio

User Sample Size
100
1,000
10,000
100,000

Figure 4. Approximating the maximum regret ratio for a given subset
R ⊆ D is done by randomly sampling 100, . . . , 100, 000 user weight vec-
tors w ∈ [0, 1]d and obtaining the maximum value among the regret ratios of
all users in the sample.

5.2 Generated Data Sets

For our experiments, we use input sets D consisting of n points in
d dimensions. Generating the input sets is done by randomly sam-
pling d values from the uniform distribution in the range [0, nd)
for each point in the input set. The output size in the following is
r = max(20, 2d) to ensure that the sorted merge for the HRMS al-
gorithm retrieves at least one point from each the intermediate set in
each dimension.

Firstly, we assess the average running times and regret ratios ob-
tained by executing the HRMS algorithm and Cube algorithm on
input sets of up to n = 106 points in d = 2, . . . , 30 dimensions
with the selection of d = 2, 4, 30 being depicted in Figure 5. Using
the hierarchical framework of the HRMS increases the running time
slightly compared to Cube algorithm in d = 2 and d = 4 dimensions.
Here, calling Cube on D is faster than calling it on 2x = 8 subsets
and performing the sorted merge during HRMS. However, with in-
creasing dimensions of the input, the divide and conquer approach
of HRMS proves useful as its running time is lower for d > 10.
Hence, subdividing the input into smaller subsets efficiently tackles
the problem of approximating the RMS. In general, the running times
of HRMS and Cube are similar. Thus, using the hierarchical frame-
work does not introduce a large overhead for small values of d and
yields an improvement in running time for higher dimensions.

In all tested dimensions d = 2, . . . , 30 the HRMS algorithm con-
sistently produces better regret ratios than the Cube algorithm. Espe-
cially for d = 2 the improvement in regret ratio is up to a factor of
8052 and on average among all n by a factor of 33. Hence, leverag-
ing the hierarchical framework we gain significant improvements in
solution quality whilst not compromising on the efficiency in terms
of running time. The HRMS algorithm uses the Cube algorithm to
obtain intermediate regret minimizing sets and proceeds by merging
the sets. Further, it yields better results than a single call to the Cube
algorithm on the entire data set D. Hence, we conclude that the im-
provement in solution quality is due to the hierarchical structure of
HRMS together with the chosen merging technique. For d = 4 the
HRMS yields regret ratios which are lower by a factor of up to 560
than Cube and on average provides an improvement by a factor of
1.7. With increasing number of dimensions, the problem of finding
a small representative subset such that every possible user is suffi-
ciently happy becomes increasingly more complex. Already adding
two objectives from d = 2 to d = 4 increases the regret ratio of
0.002 to 0.18, respectively. In d = 30 dimensions, the HRMS pro-
duces solution subsets which are better than the results of Cube by
up to a factor of 16 and on average by a factor of 1.1. However,
the HRMS algorithm optimizes for 30 objectives simultaneously and
provides representing subsets that still make the most unhappy user
about 77% happy during the decision making process with being lim-
ited to a subset of size 60 representing n = 106 possibilities.

Further, we evaluate the impact of the depth x in the hierarchy of
HRMS on its running time and regret ratio in d = 2 dimensions. For
depths x = 3, . . . , 10 the HRMS exhibits faster running times than
Cube as depicted in Figure 6. As for the remaining depth values up
to the maximum depth x = 15, the running time of HRMS exceeds
the time required by Cube. Regarding the solution quality in Figure
7, for depths x = 1, 2, 3 the regret ratio of HRMS are significantly
lower than the regret ratios of Cube with x = 3 providing the overall
lowest regret ratios in two dimensions. Hence, we chose x = 3 for
the experiments in higher dimensions. Note that for d ≥ 4 using the
maximal depth for the hierarchical framework provides consistently
better solution qualities of HRMS compared to Cube. However, the

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
[s

ec
on

ds
]

Running Time of HRMS in d = 2
HRMS + Pareto Post-Processing
Cube + Pareto Post-Processing
HRMS
Cube

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
[s

ec
on

ds
]

Running Time of HRMS in d = 4
HRMS + Pareto Post-Processing
Cube + Pareto Post-Processing
HRMS
Cube

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0

1

2

3

4

5

6

Ti
m

e
[s

ec
on

ds
]

Running Time of HRMS in d = 30
HRMS + Pareto Post-Processing
Cube + Pareto Post-Processing
Cube
HRMS

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.000

0.005

0.010

0.015

0.020

0.025

Re
gr

et
 R

at
io

Regret Ratio of HRMS in d = 2

Cube
Cube + Pareto Post-Processing
HRMS
HRMS + Pareto Post-Processing

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250
Re

gr
et

 R
at

io
Regret Ratio of HRMS in d = 4

Cube
Cube + Pareto Post-Processing
HRMS
HRMS + Pareto Post-Processing

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.05

0.10

0.15

0.20

0.25

Re
gr

et
 R

at
io

Regret Ratio of HRMS in d = 30

Cube
Cube + Pareto Post-Processing
HRMS
HRMS + Pareto Post-Processing

Figure 5. Average running times and maximum regret ratios for the HRMS algorithm and the Cube algorithm on inputs of sizes up to n = 106 in d = 2, 4, 30

dimensions using the depth x = 3 for the hierarchical framework. Additionally, the resulting running times and regret ratios after applying the Pareto Post-
Processing on both algorithms are reported.

running time of HRMS using the maximal depth is higher as when
using depths x = 3 or x = 1. Thus, we suggest the depth value
x = 3 to optimize for both the running time and the solution quality
of HRMS.

In Figure 8 we explore the reasoning why calling the Cube al-
gorithm on D provides higher regret ratios than using the HRMS
algorithm which calls Cube on smaller subsets and performs the
merging of intermediate sets. Therefore we measure the ratio of
Pareto-optimal points in the output sets of HRMS and Cube for
d = 2, . . . , 5. In every dimension, the HRMS algorithm includes
more Pareto-optimal points in its output than Cube. Recall that all
Pareto-optimal points together as the Pareto set yield a regret ratio of
zero but the size of the Pareto set might be much larger than the out-
put size r. Hence, the improvement in solution quality by HRMS is
due to retrieving more Pareto-optimal points from D than Cube. Dur-
ing the sorted merge, we emphasize on selecting points having high

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ti
m

e
[s

ec
on

ds
]

Running Time of HRMS for varying depths
Depth 1
Depth 2
Depth 3
avg. depths 4-15
Cube

Figure 6. Average running times for varying depths of the hierarchical
framework ranging from x = 1 to the maximal depth x = 15 for input sets
of sizes up to n = 106 in d = 2 dimensions and an output size of r = 20.

values in each of the dimensions which corresponds to the concept
of Pareto-optimality.

Further, we observe an increase in Pareto-optimal points in the
output sets with higher dimensionality of the input. In general, more
points in higher dimensional data sets are Pareto-optimal and for
d > 5 the ratio for both algorithms gets closer to 1.0. However, both
algorithms do not return subsets which consist entirely of Pareto-
optimal points. Hence, applying the Pareto Post-Processing to further
improve the solution quality of the algorithms is applicable.

The Pareto Post-Processing (PPP) replaces dominated points in the
output set by points that provide better value combinations from the
input data set D. Figure 5 depicts the running times and regret ra-
tios obtained after applying the PPP in d = 2, 4, 30 dimensions. The
PPP consistently yields improvements in the solution quality of both
algorithms whilst introducing only a slight increase in running time.
The largest improvement is obtained for Cube in d = 2 where PPP

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Re
gr

et
 R

at
io

Regret Ratio of HRMS for varying depths

Depth 1
Depth 2
Depth 3
avg. depths 4-15
Cube

Figure 7. Average regret ratios for varying depths of the hierarchical frame-
work ranging from x = 1 to the maximal depth x = 15 for input sets of sizes
up to n = 106 in d = 2 dimensions with an output size of r = 20.

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.2

0.4

0.6

0.8

1.0
Pareto Ratio in Output of HRMS

d = 2 d = 3 d = 4 d = 5

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Pareto Ratio in Output of CUBE

d = 2 d = 3 d = 4 d = 5

Figure 8. Comparison of the ratio of Pareto-optimal points in the output
subset of the HRMS algorithm and the Cube algorithm in d = 2, . . . , 5 di-
mensions for the output size r = 20 and depth value x = 3 for the HRMS.
yields solution subsets with regret ratios being better by up to a factor
of 11.8 than the result of Cube. Since the output of HRMS already
contains more Pareto-optimal points, the PPP provides better results
by up to a factor of 5.8. For d > 10 and especially for d = 30, the
number of Pareto-optimal points in D increases with the number of
dimensions. Thus, both algorithms already return subsets which con-
sist of only Pareto-optimal points. Thus, the PPP does not improve on
the solution quality since it does not replace any dominated points.
We conclude that the PPP is applicable for any regret minimizing al-
gorithm in d ≤ 10 dimensions where it efficiently improves on the
already obtained regret ratio.

5.3 Benchmark Data Sets

In addition to the generated data, we evaluate the hierarchical regret
minimizing algorithm on two real-world benchmark data sets typi-
cally used for RMS problems. The first data set Basketball consists
of n = 21, 961 points in d = 5 dimensions and as provided by Agar-
wal et al. [1]. The points in the data set represent basketball players
and the five dimensions correspond to the player statistics points, re-
bounds, blocks, assists and fouls. An exemplary objective for this
scenario is to find a representative subset of 20 players to be invited
to an event such that every attendant of the event is sufficiently happy
with meeting those players with respect to the performance statistics.

Table 1. Average running times in milliseconds and regret ratios of the
output sets generated by the HRMS algorithm using maximal depth x =

7, . . . , 10 (depending on the output size r) and the Cube algorithm on the
Basekteball data set.

Running Time Regret Ratio
r HRMS Cube HRMS Cube

+ post + post + post + post
10 4.17 8.21 0.62 2.62 0.2108 0.1947 0.2181 0.2181
20 10.39 18.55 1.29 6.30 0.1860 0.1836 0.2150 0.2150
50 8.36 28.58 1.41 6.43 0.0749 0.0539 0.2158 0.2158

100 16.71 57.66 6.00 18.89 0.0533 0.0513 0.1918 0.1917

The results are shown in Table 1 for output sizes r = 10, . . . , 100
where the HRMS algorithm uses the maximal depth of the hierarchi-
cal framework. In terms of running time, the HRMS is slightly slower
than the Cube algorithm. The Pareto Post-Processing imposes an in-
crease in running time for both algorithms. As for the regret ratios,
the HRMS consistently provides smaller values than Cube on all out-
put sizes. Especially for r = 50 and r = 100 the HRMS returns sub-
sets which produce significantly lower regret ratios by factor of 2.9
and 3.6, respectively, than the Cube algorithm. Applying the PPP fur-
ther improves the solution quality of HRMS whereas the results for

the Cube algorithm remain mostly unchanged. Further, for r = 100
the HRMS requires 16.71 ms for a regret ratio of 0.0533 and the
Cube algorithm together with the PPP takes 18.89 ms resulting in a
regret ratio of 0.1917.

Table 2. Average running times in milliseconds and regret ratios of the
output sets generated by the HRMS algorithm using maximal depth x =

10, . . . , 13 (depending on the output size r) and the Cube algorithm on the
El Nino data set.

Running Time Regret Ratio
r HRMS Cube HRMS Cube

+ post + post + post + post
10 50.04 82.65 8.80 24.64 0.0741 0.0741 0.0753 0.0753
20 106.27 171.62 19.31 57.84 0.0644 0.0642 0.0747 0.0747
50 76.77 241.24 19.24 57.86 0.0577 0.0551 0.0740 0.0740

100 135.10 460.10 65.28 175.47 0.0553 0.0520 0.0647 0.0641

The second benchmark data set is called El Nino as used by Agar-
wal et al. [1]. The data set contains weather data of n = 178, 079
points where the d = 5 dimensions represent measurements such
as wind speed and water temperature of buoys placed in the Pacific
ocean. Comparing the running times depicted in Table 2 of HRMS
and Cube, we observe similar patterns as with the previous data set.
Cube performs faster than HRMS on all output sizes but all execu-
tions were well below half of one seconds. On the other hand, HRMS
produces lower regret ratios than Cube by factors of up 1.3. The PPP
achieves minor improvements for both algorithms. Thus, we con-
clude that the output sets of HRMS and Cube already contain mostly
Pareto-optimal points such that the PPP cannot further improve their
solution quality. For r = 100 we observe that HRMS is faster and
obtains a lower regret ratio than Cube together with PPP as for the
Basketball data set.

6 Conclusion and Future Work
We introduce the novel hierarchical regret minimizing algorithm
HRMS tackling the regret minimization problem in arbitrary dimen-
sion. As a divide and conquer approach, the HRMS algorithm is
capable of leveraging pre-existing regret minimizing algorithms to-
gether with new merging techniques to efficiently approximate regret
minimizing sets. The hierarchical framework of HRMS allows for
user-defined adjustments such as the definition of the depth of the hi-
erarchy as well as the selection of well-established regret minimizing
algorithms best-suited for the specific scenario. Based on our exper-
iments, we provide a suggested configuration of the HRMS algo-
rithm to allow for effortless integration. Further, we develop a post-
processing technique (PPP) based on Pareto-optimal points which ef-
ficiently improves the solution quality and is applicable for any regret
minimizing algorithm. The experimental evaluation shows that our
HRMS algorithm significantly outperforms the Cube algorithm [4]
in terms of regret ratio not only on generated data up to d = 30
dimensions but also on established benchmark data sets.

Future work will target further adjustments to the hierarchical
framework of HRMS such as varying the depth of the merging phase
and extending the internally used output size for intermediate sets to
r′ = dr. It would be interesting to explore more intricate partitioning
methods during the divide phase of the algorithm to further improve
on its solution quality. Additionally, the HRMS algorithm allows for
parallelization of the calls to the regret minimizing algorithm within
the framework such that 2x subsets are processed in parallel as well
as the merging per level. Naturally, we want to incorporate other re-
gret minimizing algorithms e.g. Sphere [7] into the HRMS algorithm
and evaluate the performance of our approach.

References
[1] P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri. Efficient Algorithms for

k-Regret Minimizing Sets. In 16th International Symposium on Experi-
mental Algorithms (SEA 2017), pages 7:1–7:23, 2017.

[2] W. Cao, J. Li, H. Wang, K. Wang, R. Wang, R. C.-W. Wong, and W. Zhan.
k-Regret Minimizing Set: Efficient Algorithms and Hardness. In 20th
International Conference on Database Theory (ICDT 2017), pages
11:1–11:19, 2017.

[3] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides. Computing k-
regret minimizing sets. Proceedings of the VLDB Endowment, 7(5):389–
400, 2014.

[4] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu. Regret-
minimizing representative databases. Proceedings of the VLDB Endow-
ment, 3(1-2):1114–1124, 2010.

[5] P. Peng and R. C.-W. Wong. Geometry approach for k-regret query. In
IEEE 30th International Conference on Data Engineering (ICDE 2014),
pages 772–783, 2014.

[6] X. Qiu, J. Zheng, Q. Dong, and X. Huang. Speed-up algorithms for
happiness-maximizing representative databases. In Asia-Pacific Web
(APWeb) and Web-Age Information Management (WAIM) Joint Interna-
tional Conference on Web and Big Data, pages 321–335, 2018.

[7] M. Xie, R. C.-W. Wong, J. Li, C. Long, and A. Lall. Efficient k-regret
query algorithm with restriction-free bound for any dimensionality. In
Proceedings of the 2018 International Conference on Management of
Data, pages 959–974, 2018.

[8] M. Xie, R. C.-W. Wong, and A. Lall. An experimental survey of regret
minimization query and variants: bridging the best worlds between top-k
query and skyline query. The VLDB Journal, 29(1):147–175, 2020.

	Introduction
	Related Work
	Contribution

	Preliminaries
	Hierarchical Regret Minimizing Algorithm
	Merging of Intermediate Regret Minimizing Sets
	Suggested Configuration of the HRMS Algorithm

	Pareto Post-Processing
	Experimental Evaluation
	Approximating the Regret Ratio
	Generated Data Sets
	Benchmark Data Sets

	Conclusion and Future Work

