
EDSAF: Event-Driven Surrogate-Assisted Framework
for Real-Time Optimization

Arne De Temmermana,b,*, Yari Depreeuwa and Mathias Verbekea,b

aM-Group, KU Leuven, Spoorwegstraat 12, Bruges, Belgium
bFlanders Make@KU Leuven, Belgium

ORCID (Arne De Temmerman): https://orcid.org/0000-0002-4989-3810

Abstract. Surrogate-assisted optimization tackles a significant
challenge in population-based optimization methods by reducing the
number of evaluations required for expensive problems. However,
while surrogates excel in evaluation efficiency, they compromise on
runtime efficiency due to the computational requirements of using
extensive data archives. These data archives result in slow feedback
times during the selection, fitting, and optimization of the surrogate
model. The slow feedback creates a significant downtime in the uti-
lization of the problem as it awaits new proposals to be generated. To
address this issue, we introduce the Event-Driven Surrogate-Assisted
Framework (EDSAF). This framework enhances problem evaluation
efficiency by parallelizing time-consuming optimization steps and
leverages a trigger-based framework. It minimizes the time gap be-
tween receiving new problem evaluations and generating new pro-
posals in response, ensuring a quick response to incoming informa-
tion from the system for more effective problem utilization. EDSAF
is algorithm- and problem-agnostic, making it applicable across a
wide range of unconstrained, multi-objective optimization problems.
In comparison with standard surrogate-assisted optimization, our re-
sults demonstrate a substantial improvement in problem utilization,
resulting in reduced runtime while preserving efficient convergence
on a set of multi-objective benchmarks.

1 Introduction

A near-perfect solution can be found with enough attempts and suf-
ficient time. In most real-world optimization problems, though, a
non-trivial cost exists to execute and evaluate the objective and con-
straint functions, also referred to as expensive optimization prob-
lems (EOP). EOPs in research and application fields such as Agri-
culture [18, 31], Engineering [37], Health Care [27], or Computer
Science [26], are increasingly being tackled by applying heuristic
search methods. These problems are characterized by their expensive
solution evaluations (ESE), including running simulations (Compu-
tational Fluid Dynamics [1], Finite Element Analysis [34]), real-
world parameter optimization (process setting optimization [30], ma-
terial composition design [32]), or hyperparameter optimization [33].
These ESEs are black-box in nature with no gradient information
available and set the unique challenges of often having multiple, in-
commensurable objectives with a vast feature set that is expensive to
evaluate and search.

∗ Corresponding Author. Email: arne.detemmerman@kuleuven.be

Evolutionary computation (EC) methods are often a good fit for
non-convex, non-linear, constrained, multi-objective, and uncertain
cost functions. However, EC methods do have some limitations,
mainly related to convergence efficiency. This is addressed by Surro-
gate Assisted Optimization (SAO) [21]. These surrogates model the
objective space from previously explored solutions and use a less ex-
pensive approximation to improve the convergence of the optimiza-
tion search.

The cost of an EOP can be determined in several ways. A common
method is to account for the number of evaluations of the problem.
For each evaluation, a prior cost estimation or post-hoc cost measure-
ment can be determined. The total cost is then determined as the cost
per evaluation multiplied by the number of evaluations. This cost can
be minimized by either reducing the cost for each evaluation or re-
ducing the number of total evaluations. This cost-per-evaluation is
often not an accurate representation of real-world problems where
the cost is not only defined per unit but also as an overall overhead
cost. For instance, the cost of running simulations is not based on the
CPU-second (i.e., the number of seconds all the cores are maximally
used) but the allocated time for a compute instance for running the
complete experiment. In the optimization of real-world manufactur-
ing processes, both the number of scrap products and the total time
that the system is unavailable contribute to the total cost. This can
be defined as the problem utilization, the actual number of evalua-
tions compared to the maximum possible number of evaluations per
time unit. As the problem utilization decreases, the total cost (and,
therefore, the cost per evaluation) will increase.

Surrogate-assisted algorithms trade-in problem utilization for
evaluation efficiency. The process of fitting, updating, or searching
an approximation using data-driven surrogate models takes consid-
erable time. During this phase, once all evaluations are received,
the evaluation step is paused while waiting for new proposal solu-
tions. As these proposals arrive after a certain duration, the focus
shifts back to the evaluation while the optimizer waits for all the
evaluations to happen. A surrogate update strategy based on incom-
ing data frequency and that distributes the computationally intensive
processes would allow a decrease in the loop time between receiving
new information and suggesting proposals based on this information.
This decrease in loop time has several advantages:

• The proposals based on the last iteration can be evaluated sooner
on the EOP.

• Dynamically selecting the size of the population for evaluation
based on the iteration speed of the optimizer allows a maximized

https://orcid.org/0000-0002-4989-3810


problem utilization. This also addresses handling non-constant
evaluation durations.

• The speed of the optimization step (and therefore the number of
evaluations per time unit) will become less dependent on the size
of the data archive.

We propose a novel Event-Driven Surrogate-Assisted Frame-
work (EDSAF), allowing efficient surrogate-assisted optimization of
population-based algorithms.

The source code of the framework is provided through the pyED-
SAF package. 1

pyEDSAF provides a framework to define asynchronous prob-
lems with customizable function evaluation calls and waitable trig-
gers. The user can implement their own communication and paral-
lelization to the ESE, making it highly usable for a large number
of applications. This work builds upon the popular Python packages
Pysamoo and Pymoo from Blank et al. [6, 8] that provides GPSAF
as a surrogate provider to enable an optimization algorithm-agnostic
implementation. Pymoo is a very popular multi-objective optimiza-
tion toolkit with more than 3.150.000 downloads to date, providing a
broad range of test problems and optimization algorithms for single-
and multi-objective, constrained, and unconstrained test problems.
This framework supports additional utility software, such as problem
initialization with historical data, result visualization, and result met-
rics. Pysamoo extends on Pymoo with a number of surrogate-assisted
frameworks, allowing a computationally efficient implementation of
the broad package of Pymoo. pyEDSAF maintains a slim profile,
extending the capabilities of these frameworks to handle real-world
optimization of time-expensive problems.

EDSAF is an asynchronous implementation of the Generalized
Probabilistic Surrogate-Assisted Framework (GPSAF) [7] that pro-
vides a more evaluation-centric vision. An effort is made to improve
the problem utilization of EOP by limiting the downtime in the eval-
uation runs. This is achieved by two improvements:

• Problem evaluation is rewritten as an asynchronous implementa-
tion. It leverages a queue-based evaluation, where the problem
continuously takes evaluations from the queue. The newest pro-
posals from the optimization receive a higher priority compared
to previous ones through a LIFO queue.

• The sequential surrogate tuning, fitting, and optimization are sep-
arated into a trigger-based process where each stage has its own
prerequisites to start a new iteration. This allows an independent
granularity where the procedures are only executed when strictly
necessary.

In this paper, we first discuss related existing optimization frame-
works in Python that are applicable for the optimization and evalua-
tion of expensive problems (in Section 2). In Section 3, the deficien-
cies of current methodologies are analyzed through time complexity.
From this analysis, we propose and discuss the novel Event-driven
Surrogate-Assisted Framework (EDSAF). A comparison of EDSAF
with traditional surrogate-based methods is provided in Section 4
with a conclusion in Section 5.

2 Related Work
In this section, a brief overview of implementations for multi-
objective surrogate-assisted optimization will be discussed by re-
viewing the general direction and goal of the authors, the support for

1 The source code is publicly available through KU Leuven Gitlab repository
and documentation

multi-objective optimization, parallel execution, surrogate-assisted
implementations, and event-driven optimization for efficient problem
utilization. Parallel Global Multiobjective Optimizer (PyGMO) [5] is
a Python library designed for massively parallel optimization. It aims
to simplify the deployment of optimization algorithms and prob-
lems in massively parallel environments by providing a unified inter-
face. The package includes asynchronous implementations of a wide
range of optimization algorithms but does not provide surrogate-
assisted optimization. jMetalPy [3], a Python port of the popular
jMetal Java library, is designed for multi-objective optimization us-
ing metaheuristic techniques. It provides an environment for solving
multi-objective optimization problems, focusing not only on tradi-
tional metaheuristics but also on techniques supporting preference
articulation and dynamic problems. Similar to PyGMO, surrogate-
assisted optimization is not provided for jMetalPy. Distributed Evo-
lutionary Algorithms in Python (DEAP) [17] is a framework for evo-
lutionary computation that allows for rapid prototyping and testing of
ideas. DEAP focuses on genetic algorithms with added capabilities
for multi-objective optimization. Parallelization is supported through
multiprocessing, which enables more efficient evaluations. DEAP,
like pyGMO and jMetalPy, does not yet support a framework for
implementing surrogate-assisted optimization out of the box. This
requires custom integrations of surrogate modeling into the frame-
works by the user [15, 24, 36, 40, 39].

PySOT [14] is an asynchronous parallel optimization toolbox for
EOP built upon POAP, an event-driven framework for constructing
and combining asynchronous optimization strategies. It is designed
for the global optimization of expensive functions where concur-
rent function evaluations are beneficial. The package is restricted
to single-objective, constrained optimization, not allowing usage for
common multi-objective real-world problems where expensive eval-
uations are much more frequent. pySOT provides an implementa-
tion of four surrogate models, namely radial basis function (RBF),
Gaussian Process Regression (GPR), Multivariate Adaptive Regres-
sion Splines (MARS), and a polynomial regression without a pos-
sibility for surrogate selection or hyperparameter tuning during the
optimization runs.

These frameworks have been widely used in the field of optimiza-
tion, particularly in scenarios where the objective functions are com-
putationally expensive and the number of evaluations is limited. Most
offer synchronous and asynchronous parallelism and support both
continuous and integer variables. Some offer surrogate support to
further improve the efficiency of the optimization. These packages
work from the same principle, namely, a fixed population size is set
for each generation. The optimizer waits for all these evaluations, no
matter how long it takes.

Some work has been published on dynamic hyperparameters dur-
ing optimization runs. For instance, Tran et al. [35] introduce a
MOEA with adaptive population size, self-adaptive crossover, and
self-adaptive mutation for automating the process of adjusting pa-
rameter values. The proposed method tries to keep the population
size as small as possible, allowing for a large number of generations
until this population size is not large enough to commensurate the
difficulty of the problem. Li et al. [24] produce an adaptive surrogate-
assisted single-objective DE implementation. This implementation
adapts the population size based on the number of feasible solu-
tions found, allowing an improved convergence for high-dimensional
problems. In work from Elsayed et al. [13], a surrogate-assisted dif-
ferential evolution was proposed called DE-DPS. The motivation be-
hind DE-DPS is to find the most appropriate parameters for the mu-
tation, crossover, and population size during the evolution process to

https://gitlab.kuleuven.be/m-group-campus-brugge/dtai_public/pyEDSAF
https://m-group-campus-brugge.pages.gitlab.kuleuven.be/dtai_public/pyEDSAF


improve the offspring generation. The parameters with the best off-
spring are kept for further generations. The works of these authors
optimize the population size setting based on the quality of the gen-
erated offspring but do not consider the evaluation duration or cost
for EOP.

3 Methodology
The speed of surrogate-assisted optimization highly depends on the
size of the historical dataset, called the archive, the used architecture
for tuning, and the used surrogate model(s).

3.1 Time complexity of optimization algorithms

The relative time usage of each stage can be described through a time
complexity analysis to compare each stage to the full procedure of
the computational requirements of an event-driven surrogate-assisted
optimization. The time complexity indicates the amount of time it
takes to run an algorithm. This is generally expressed as a function
of the size of the population N . In addition to the population size,
three other parameters, problem dimensionality D, the number of
epochs/generations G, and archive size A, are included to represent
the influences of said parameters.

We do not take into account other influencing variables, such as
model architecture. These certainly matter to the overall timing of fit-
ting and inference runs of the surrogate model. The analysis through
time complexity is executed in three steps:

1. Divide the full procedure into different phases.
2. Identify the most basic operations of each phase. These basic oper-

ations are the operations that contribute most to the total runtime.
3. Determine the number of times the basic operation is run, depend-

ing on the size of the input.

This analysis is applied to both (multi-objective) population-based
optimization algorithms and their surrogate-assisted equivalents.

3.1.1 Population-based algorithms

Imagine an EOP with a fixed evaluation time. Population-based al-
gorithms (PBA) can be represented as a series of iterations between
the EOP and the algorithm. Both the evaluations of the EOP and
the algorithm search take a finite amount of time to process. This
is represented in the first timing diagram in Figure 1 by the non-zero
width of each block. The length of the EOP evaluation depends on the
number of proposals of the PBA and the loop time of an evaluation.
Simple population-based metaheuristics require minimal computa-
tion to determine a resulting answer in the form of a set of proposals.
The steps for time complexity analysis can be applied to genetic al-
gorithms (GA). These approaches do not use historical information
from previous iterations to generate proposals. Multiobjective evolu-
tionary algorithms (MOEAs) handle a diverse set of solutions to find
multiple Pareto-optimal solutions in one single simulation run. The
non-dominated sorting genetic algorithm (NSGA-II) was one of the
first such MOEAs. The time complexity of NSGA-II is given as:

O(G ·M ·N2) (1)

with G is the number of generations, N is the population size, and
M is the number of objectives [11]. The same steps can be applied to
other MOEAs, such as the Strength Pareto Evolutionary Algorithm

2 (SPEA2) from Zitzler et al. [42] and Knowles and Corne’s Pareto-
archived PAES [22], summarized in Table 1. The time complexity of
MOEA, independent of the fitness evaluation, depends on the com-
plexity of the problems in terms of the number of objectives M , the
number of individuals in each generation N , and the total amount
of generations G. The total amount of historical evaluations in the
archive has no influence.

3.1.2 Surrogate-assisted MOEA

In contrast to non-surrogate optimization, surrogate-assisted op-
timization employs data-driven models to approximate the EOP.
Surrogate-assisted optimization and time efficiency do not go hand
in hand. The surrogate tuning and fitting steps require significantly
increased computational needs and execution time relative to the op-
timization algorithms. A surrogate-assisted evolutionary algorithm
(SAEA) can be simplified in the following steps:

1. Archive: A dataset of evaluations is gathered in the form of an
archive of historically evaluated proposals and their corresponding
objective values.

2. Surrogate selection and hyperparameter tuning: A range of
possible surrogate models is evaluated and compared through hy-
perparameter tuning. This step is repeated to account for changes
in model fit due to data drift caused by the optimization search
itself and increasing archive size. The time complexity of this step
depends on the number of hyperparameters used H , the granular-
ity of the search space Sh, and the complexity of the underlying
modelM(N). The total number of combinationsNc for each sur-
rogate model to explore is:

Nc =

i=H∑
i=0

Sh (2)

The surrogate selection and hyperparameter tuning for Nm possi-
ble model architectures can be noted as follows:

O

(
i=Nm∑
i=0

Nc,i ·Mi(N)

)
(3)

Different types of surrogate models can be considered. A decision
tree, for instance, is built by going over each possible feature to
split on, finding the best possible split for that feature, and de-
termining the goodness of the fit. For continuous data, the input
features are sorted to find the best possible split. This sorting step
takes O(N log(N)), which dominates the runtime. This is exe-
cuted for each of the D features, resulting in:

O(MDT (N)) = O(N log(N) ·D) (4)

The time complexity for both the fitting and inference steps of
common surrogate models is listed in Table 2.
The duration of the tuning stage of the surrogate is dependent on
the used surrogate model, the size of the archive, and the number

Table 1: The time complexity of a selection of commonly used ge-
netic algorithms with G, the number of generations; M, the number
of Objectives; and N, the population size.

Algorithm Time Complexity Citations

NSGA, SPEA O(G ·M ·N3) [10, 11, 25]
NSGAII, SPEA2, PEAS O(G ·M ·N2) [10, 11, 25]
Variants of NSGA-II O(G ·M ·N logM−1 N) [12, 16, 20, 23]



(a
)P

B
A EOP

1

(b
)S

A
F EOP

1
(c

)E
D

S
A

F EOP
1 2 3

Evaluation
Surrogate tuning

Surrogate fitting

Surrogate optimization

1 Evaluation downtime
2 Minimum evaluation size
3 Additional problem utilization

Figure 1: A representation of the timing of a population-based algorithm (PBA), a Surrogate-Assisted Framework (SAF), and the proposed
Event-Driven Surrogate-Assisted Framework (EDSAF). The non-zero width of each block illustrates the time to evaluate the problem (orange),
tune the surrogate (green), fit the surrogate (red), and search the surrogate or population (blue).

of hyperparameter combinations searched. A large archive of his-
torical data would result in a significant increase in the duration of
the tuning of the surrogate.

3. Fitting of the surrogate: The tuning of the surrogate will se-
lect an optimal hyperparameter combination to use for the current
archive. This stage executes a single fitting on the archive. Simi-
lar to the tuning, the duration of the fitting stage of the surrogate is
dependent on the surrogate model used and the size of the archive.

4. Optimization of the surrogate: Finally, after the construction of
the surrogate, the optimization is applied to this model. As stated
in Section 3.1.1, the optimization time-efficiency depends on G,
the number of generations; N , the population size; and D, the
problem dimensionality. As the surrogate replaces the EOP, we
can afford a higher number of generations and population size.
This results in a much faster convergence in terms of the evalu-
ation efficiency of the EOP but is disadvantageous for time effi-
ciency. The time complexity of this step is a combination of the
inference on the surrogate and the complexity of the optimization
algorithm.

Next to the used surrogate model and computational resources,
the duration of the tuning, fit, and search mainly depends on the
size of the archive. This means as the optimization continues, the
archive will expand and in turn, increase the time between the fin-
ished evaluation and the generation of the next proposals. The anal-
ysis shows that the main aspect contributing to the time complexity
of the surrogate-assisted optimization procedure are the tuning and
fitting of the surrogate model. This step can have cubic growth in
relation to an increase of the complete data archive, depending on
the chosen model. Several approaches can lower the duration of this
step:

1. The input size can be reduced by not including the full archive
in the surrogate tuning and fitting. For example, the archive could
be sampled based on the recency or domain representation of the

Table 2: The time complexity of commonly used surrogate models
for the fitting and inference stage with the size of the archive A; D,
the dimensionality; K, number of trees; T, the depth of the trees.

Surrogate Fitting Inference

Linear reg. (OLS) O(AD2 +A3) O(D) [38]
GPR O(A3) O(A3) [2]
Decision tree O(A log(A) ·D) O(log(A)) [28, 29]
Random forest O(KA log(A) ·D) O(K log(A)) [28, 29]
XGBoost O(KTA) O(KT ) [9]

data.
2. An incremental learning approach could be used for fitting the

surrogate. This would allow the addition of new data to the model
for each evaluation iteration without needing to fit the model to
the full archive.

3. An event-driven method separates the required stages in parallel
tracks. We can define a set of start prerequisites (triggers) for each
stage. This allows a varying temporal granularity between the par-
allel stages, as some steps are allowed to take a longer duration
if needed. This method allows a short response time on incoming
data by not requiring all processes to finish. This is our approach
for EDSAF.

3.2 Event-Driven Surrogate-Assisted Framework
(EDSAF)

Figure 1 shows our proposed method EDSAF compared to the tra-
ditional structure of a Surrogate-Assisted Framework (SAF). The fit
of the surrogate model is started when a minimum number of evalu-
ations is reached (shown by 2); it does not require all proposals to be
evaluated. By fitting the model on a part of the proposed solution, we
allow the fitting of the surrogate to commence sooner. The evaluation
is still being continued, avoiding a downtime during the EOP evalua-
tion. The evaluations (shown by 3) that happen after the minimum of
evaluations is reached are not wasted. These values still explore the
problem and are used on the next fitting iteration. The optimization of
the surrogate is performed sequentially after the fitting, as no benefit
would be found by searching the surrogate from the previous itera-
tion. The tuning of the surrogate is the most time-consuming stage.
The back-and-forth iterations are not slowed by executing this stage
in parallel to the fit and optimize processes. As the fit stage does not
require the latest tuned hyperparameters before commencing, we do
not wait for this stage to finish. The updated parameters are ingested
to the fitting stage when available.

The algorithm can be summarized by the pseudocode shown in Al-
gorithm 1. The EDSAF begins with an initialization (Lines 1-7); this
initialization uses a chosen sampling (Line 2) to provide a set of ini-
tial proposals to the launch queue (Line 3) and waits for the complete
sampling to finish (Line 4 to 6). On the first evaluations, an initial full
hyperparameter tuning is performed to find the first useable surrogate
model (Line 7). While the optimization run has not reached the ter-
mination criteria, set here as a maximum number of evaluations, the
iteration continues (Line 9). This loop starts by fitting the surrogate



Algorithm 1 EDSAF

Require: QueuesQl,EOP andQr,EOP from the EOP, Optimization
algorithm Φ, Queues Ql,H and Qr,H from the Hyperparameter
optimization H , Minimum Evaluations per Iteration SEI(min),
Maximum Number of Solution Evaluations SE(max)

. Initialize an archive and proposal set
1: A← ∅;P ← ∅;
. Initial sampling of the EOP

2: A.X ← doe();
3: Ql,EOP ← A.X
. Wait for all evaluations to finish

4: while Ql,EOP 6= 0 do
5: end while
6: A.F,A.G← Qr,EOP

. Initial surrogate hyperparameter tuning
7: Ql,H ← A.X,A.F,A.G
8: Ho ← Qr,H

9: while size(A) < SEmax do
. Surrogates S for each obj. and constr.

10: S ← Ho.fit(A.X,A.F,A.G)
. Generate a set of proposals P with the chosen optimization alg.

11: P.X ← Φ.optimize(S)
. Add the proposals on EOP launch queue Ql

12: Ql ← P.X
. Wait to reach the min. required eval. from the queue Qe

13: while size(Ql) > size(P.X)− SEI(min) do
14: end while
15: P.F, P.G← P.F, P.G ∪Qe

16: A← A ∪ P
. Receive the results and start a new hyperparameter opt. if the
previous run is finished

17: if size(Qr,H) > 0 then
18: Ho ← Qr,H

19: Ql,H ← A.X,A.F,A.G
20: end if
21: end while

Algorithm 2 EDSAF: Evaluation

Require: EOP
. Initialize the evaluation queues

1: Ql ← ∅;Qr ← ∅;
2: for ql ∈ Ql do
3: qr ← EOP.evaluate(ql)
4: Qr ← Qr ∪ qr
5: end for

model on the updated archive of all past evaluations (Line 10). The
fitted surrogate is searched by the given optimization algorithm, re-
sulting in a set of proposals (Line 11). This set of proposals is added
to the launch queue to be evaluated on the EOP (Line 12). Here, a
minimum number of finished evaluations SEImin is required (Lines
13-14) before the algorithm receives the evaluations (Line 15) and
adds the new points to the archive (Line 16). If the previous hyper-
parameter tuning run has finished (Line 17), the new hyperparameter
set is received (Line 18), and a new run is started (Line 19). By mini-
mizing the duration of the loop (Lines 9-21), a more frequent update
of the surrogate would be possible on new data.

The evaluation of the EOP is guided through a launch and receive
queue (Ql,EOP andQr,EOP ) where the EOP will sequentially evalu-
ate all the proposals given. This process is shown as a parallel process

in Algorithm 2. The hyperparameter tuning of the surrogate is simi-
larly parallel to the main process with two queues Ql,H and Qr,H .

3.3 Design of experiments

To evaluate the performance, the proposed EDSAF algorithm is com-
pared to a baseline surrogate-assisted implementation by using GP-
SAF on a series of unconstrained, multi-objective optimization prob-
lems. The experiments are repeated in multiple runs (n=40) on multi-
ple independent machines with fixed semi-random seeds to take into
account the non-deterministic nature of genetic-based algorithms and
computational timing. The used hardware are five identical 8-thread
machines (Intel(R) Core(TM) i7-2600 CPU @ 3.40GH) with 16 Gb
memory. Each problem evaluation had a fixed duration of 0.2 sec-
onds. A Gaussian Process Regression (GPR) with a Radial Basis
Function (RBF), initialized with a broad hyperparameter range (nor-
malization, regressions, kernel), is provided as a surrogate.

The proposed method is compared to the baselines through a rank-
based comparison adapted from Blank et al. [7]. This allows us to
compare the performance of the event-driven proposal across a large
test suite. The rank-based comparison procedure is as follows:

1. Statistical Domination: After gathering data from multiple runs
for each test problem and algorithm (A ∈ Ω), we perform a pair-
wise comparison of performance indicators (PI) between all algo-
rithms using the Wilcoxon Rank Sum Test (α = 0.05). The null
hypothesis H0 is that no significant difference exists, whereas the
alternative hypothesis is that the performance indicator of the first
algorithm (PI(A)) is less than that of the second one (PI(B)), as
follows:

φ(A,B) = RANKSUM
(
PI(B),PI(A), alt =′ less ′

)
(5)

where the function φ(A,B) returns zero if the null hypothesis is
accepted or one if it is rejected.

2. Number of Dominations: The performance P (A) of algorithm A
is then calculated by the number of methods that are dominating
it:

P (A) =
∑
B∈Ω
A6=B

φ(B,A) (6)

This results in a domination number P (A) for each method,
which is zero if no other algorithm outperforms it.

3. Ranking: Finally, we sort the methods by their PI(A). This
might result in a partial ordering with multiple algorithms hav-
ing the same PI(A) values. To maintain the overall sum of ranks
equal, we assign their average ranks in case of ties. Averaging the
ranks for ties penalizes an optimization method for being domi-
nated by the same number of algorithms as others and keeps the
rank sum for each problem the same.

3.4 Performance indicators

The proposed algorithm is evaluated on three performance indica-
tors (PI): Convergence to the ideal solution, runtime efficiency, and
computational requirements.

1. The convergence compares the ability of the algorithm to ap-
proach the ideal solution in function of the number of evaluations.
IGD+[19] is used as a PI for multi-objective problems if the op-
timum is known; otherwise, Hypervolume [43] is used.



NSGA-II GPSAF NSGA-II ED-GPSAF NSGA-II

0 200 400 600
Function Evaluations

0.0

0.5

1.0

1.5

2.0

IG
D

+

(a)

101 102

Total runtime (s)
0.0

0.5

1.0

1.5

2.0

IG
D

+

(b)

100 102

Total execution time (s)
0.0

0.5

1.0

1.5

2.0

IG
D

+

(c)
Figure 2: Comparison of the IGD+ of a single optimization run for the three implementations (Baseline, GPSAF, EDSAF) of the NSGA-II.
The IGD+ metric is compared against the number of evaluations (2a), the runtime of the algorithm (2b), and the execution time (2c) on ZDT1.

2. The Runtime signifies the total feedback time of the algorithm.
This denotes the total time delta between starting the first evalua-
tions and the final result of the optimizer. The value includes both
the time needed to evaluate the problem and apply the optimiza-
tion procedure to the evaluated points. The PI for the runtime is
defined as the reached convergence after a fixed runtime. This PI
considers both the efficiency of the optimizer and the time needed
to find the results.

3. The last PI evaluated is the total execution time to compare the
computational requirements of the algorithm. The compute usage
is tracked for each iteration in terms of total CPU time (the time
the CPU spends executing instructions). For multiple cores, CPU
time is measured as the sum of the CPU time for all cores.

4 Results and discussion
The experimental evaluation investigates the influence of EDSAF on
the PIs of existing optimization algorithms on unconstrained multi-
objective problems using the six problems of the ZDT test suite [41].
A high number of evaluations is specifically required when the prob-
lem exists from multiple conflicting objectives. The following num-
ber of variables were used for each problem respectively: 30, 30,
30, 10, 80, and 10. Three popular optimization algorithms, NSGA-
II [11], SPEA2 [42], and SMS-EMOA [4] are used as baseline al-
gorithms, where we compare the convergence of the event-driven
implementation of GPSAF with the standard GPSAF and the non-
surrogate-based baseline.

Figure 2 compares a single optimization run from the three vari-
ants (baseline, GPSAF, and EDSAF) of NSGA-II applied to the
ZDT1 problem. The first graph (2a) shows the convergence of the
optimization through the IGD+ metric. For NSGA-II and GPSAF-
NSGA-II, a regular sampling can be seen with a population size of
50 evaluations for each generation. This is not the case for EDSAF,
as the population size of this algorithm depends on the speed of the
said algorithm. A slower optimization run will result in more pro-
posals that can be evaluated for the next generation. In this specific
run, GPSAF has a superior convergence while EDSAF trails behind.
NSGA-II has a very slow convergence in relation to the number of
evaluations. Figure 2b plots the convergence in relation to the run-
time of the optimization run. In this instance, EDSAF does not wait
for the initial sampling to be completed, resulting in a faster pro-
posal from the first generation. This proposal is, as expected, not very
good. NSGA-II waits for the first sampling to be completed, which
causes a longer first iteration. Again, NSGA-II does not converge
very efficiently as the runtime increases. GPSAF requires a long wait
for the first iteration as it waits for all evaluations, then builds and
optimizes the surrogate. Only after the surrogate optimization will a
new set of proposals be created. In this run, the convergence of GP-

SAF does catch up to EDSAF after three generations. The execution
time of each NSGA-II variant is shown in the third Figure 2c. Each
variant is in a league of its own, with GPSAF requiring a consider-
able computation time to converge to new results.

In the first experiment, the number of evaluations is limited to 500.
The convergence (Table 3a), total runtime (Table 3b), and execution
time (Table 3c) after the last iteration are compared between the set
of said algorithms. For the second experiment, a runtime limit of 100
seconds is set to address the efficiency of the convergence compared
to the runtime. This experiment shows the true benefits of the EDSAF
approach through the convergence efficiency in a limited runtime.
These results are shown in Table 3d. From the results in Table 3a,
we can see that the non-surrogate algorithms are outperformed in
terms of convergence efficiency by the GPSAF implementations. The
standard GPSAF has a superior IGD+ metric over the event-driven
version for most of the evaluated problems and baseline algorithms,
except for problem ZDT4. Regarding the performance between dif-
ferent baselines, we see a clear ranking, with SPEA2 being the best-
performing, NSGA-II in second place, and SMS-EMOA performing
overall worst. For both GPSAF implementations, the baselines are
comparable, but there are no real superior results for any of the three
used algorithms. GPSAF-SMS-EMOA and GPSAF-NSGA-II show
the best results in this experiment, with both having an average rank
of 2.17. Comparing the total runtime after 500 evaluations in Ta-
ble 3b, the baseline optimizers are clearly the fastest methods with
no distinction in the subgroup. For the surrogate-assisted framework,
the event-driven implementation is evidently faster than the standard
GPSAF implementation, with the exception of EDSAF-NSGA-II for
problem ZDT1. No immediate reason can be given for this discrep-
ancy. In some discrete cases, such as ZDT4 and ZDT6, we even see
no significant increase in the runtime of EDSAF compared to the
baselines. For the execution time, the total CPU usage of the separate
steps in the optimization is aggregated and compared. Similar to the
runtime, the baseline methods are the superior method for this met-
ric. These methods are only single-threaded processes, resulting in a
very low usage of the available computing power. The event-driven
methods lag behind as they spread the load from the surrogate tuning
and fitting steps to additional CPU cores as parallel processes. The
GPSAF methods are the worst performing, with an average ranking
of 7.83, being clearly the worst group in terms of total compute us-
age. This is caused by tuning and fitting triggers being based on a
fixed number of evaluations per iteration, resulting in a full run of all
steps for each iteration.

Finally, we want to compare the convergence efficiency in a
limited-time situation with the second experiment. Here, we allow
a limited number optimization runtime of 100 seconds. The best
IGD+ metric within this time limit is compared between the same
nine algorithm frameworks. In this specific setup, the advantage of



Table 3: Comparison of four metrics for NSGA-II, SPEA2, and SMSEMOA with their GPSAF and EDSAF variants on unconstrained multi-
objective problems. The rank of the overall best-performing algorithm is shown in bold.

(a) IGD after 500 evaluations
Problem Baseline GPSAF EDSAF

NSGA-II SPEA2 SMSEMOA NSGA-II SPEA2 SMSEMOA NSGA-II SPEA2 SMSEMOA

ZDT1 8.0 7.0 9.0 2.0 2.0 2.0 6.0 5.0 4.0
ZDT2 8.0 7.0 9.0 2.0 2.0 2.0 4.5 4.5 6.0
ZDT3 8.0 7.0 9.0 2.0 2.0 2.0 5.5 5.5 4.0
ZDT4 8.0 7.0 9.0 2.0 4.0 4.0 1.0 6.0 4.0
ZDT5 8.0 7.0 9.0 3.0 2.0 1.0 4.5 4.5 6.0
ZDT6 8.0 7.0 9.0 2.0 2.0 2.0 4.0 5.5 5.5

Total 8.00 7.00 9.00 2.17 2.33 2.17 4.25 5.17 4.92
(b) Runtime after 500 evaluations

Problem Baseline GPSAF EDSAF
NSGA-II SPEA2 SMSEMOA NSGA-II SPEA2 SMSEMOA NSGA-II SPEA2 SMSEMOA

ZDT1 2.0 2.0 2.0 7.0 7.0 7.0 9.0 4.5 4.5
ZDT2 2.0 2.0 2.0 8.0 8.0 8.0 5.0 5.0 5.0
ZDT3 2.0 2.0 2.0 8.0 8.0 8.0 5.0 5.0 5.0
ZDT4 3.5 3.5 3.5 8.0 8.0 8.0 3.5 3.5 3.5
ZDT5 2.0 2.0 2.0 8.0 8.0 8.0 5.0 5.0 5.0
ZDT6 3.5 3.5 3.5 8.0 8.0 8.0 3.5 3.5 3.5

Total 2.50 2.50 2.50 7.83 7.83 7.83 5.17 4.42 4.42
(c) Execution time after 500 evaluations

Problem Baseline GPSAF EDSAF
NSGA-II SPEA2 SMSEMOA NSGA-II SPEA2 SMSEMOA NSGA-II SPEA2 SMSEMOA

ZDT1 2.0 2.0 2.0 8.0 8.0 8.0 6.0 4.5 4.5
ZDT2 2.0 2.0 2.0 8.0 8.0 8.0 5.0 5.0 5.0
ZDT3 2.0 2.0 2.0 8.0 8.0 8.0 5.0 5.0 5.0
ZDT4 2.0 2.0 2.0 8.0 8.0 8.0 5.0 5.0 5.0
ZDT5 1.5 3.0 1.5 8.0 8.0 8.0 5.0 5.0 5.0
ZDT6 2.0 2.0 2.0 8.0 8.0 8.0 5.0 5.0 5.0

Total 1.92 2.17 1.92 8.00 8.00 8.00 5.17 4.92 4.92
(d) IGD after a runtime = 100s

Problem Baseline GPSAF EDSAF
NSGA-II SPEA2 SMSEMOA NSGA-II SPEA2 SMSEMOA NSGA-II SPEA2 SMSEMOA

ZDT1 8.0 7.0 9.0 5.0 5.0 5.0 1.0 2.5 2.5
ZDT2 8.0 7.0 9.0 5.0 5.0 5.0 2.5 1.0 2.5
ZDT3 4.5 4.5 6.0 8.0 8.0 8.0 1.5 1.5 3.0
ZDT4 7.0 4.0 7.0 7.0 7.0 7.0 2.0 2.0 2.0
ZDT5 7.5 7.5 9.0 2.0 2.0 2.0 5.0 5.0 5.0
ZDT6 8.5 7.0 8.5 5.0 5.0 5.0 2.0 2.0 2.0

Total 7.25 6.17 8.08 5.33 5.33 5.33 2.33 2.33 2.83

EDSAF is shown, with a significant improvement for all problems
except ZDT5. The other methods trail behind EDSAF due to two
different causes. The baseline methods lack the needed convergence
to reach a good result because of the limited number of evaluations
available due to the evaluation duration of the problems. This is in
contrast to the GPSAF, where an excellent convergence is possible
with a limited number of evaluations. Still, the optimization step re-
quires relatively more time to reach new proposals to evaluate. This
causes, in turn, a downtime of the evaluation process, where unused
time is wasted while waiting for proposals. When comparing the
event-driven to the standard surrogate-assisted, EDSAF maintains a
close gap in terms of convergence in relation to the number of evalu-
ations. The proposed method can still be seen as a valid implementa-
tion for ESE optimization. The main advantage of EDSAF is the clear
reduction in runtime and computational needs, reducing the over-
all need for larger computing power even when working with larger
archive datasets, while maintaining sufficient convergence. The ED-
SAF methods marginally lag behind the runtime performance of the
baseline optimization implementations. This makes them very suit-
able for real-time optimization of complex, possibly multi-objective
problems without needless downtime of the EOP.

5 Conclusion
In this work, we proposed an event-driven approach for surrogate-
assisted optimation of expensive problems. Expensive, in this con-
text, is defined with respect to two aspects. The traditional definition
of expensive optimization problems as a cost of a single evaluation is
taken into account while also accounting for the runtime efficiency of
the evaluated problem. The objective is to arrive at a close-to-optimal
solution with a minimal amount of evaluations while keeping the
computational needs in check. This allows for a fast iteration time
of the surrogate-assisted optimization, which is ideal for real-time
optimization of complex, expensive problems without an increasing
runtime duration due to the expanding data archive.

EDSAF has been applied to multiple, well-known population-
based algorithms on complex multi-objective benchmark functions.
While the proposed approach does not reach the convergence excel-
lence of traditional, high compute-intensive surrogate-assisted meth-
ods and lags behind the runtime of a classic optimization algorithm,
such as NSGA-II, it takes the best of both worlds to reach a good
balance. This allows a superior convergence of the problem in rela-
tion to the runtime of the optimization, allowing better utilization of
the limited evaluation availability, such as in simulation allocations
or testing periods of real-world processes.



Acknowledgements

Conflict of interests The authors have no competing interests to de-
clare that are relevant to the content of this article.
Funding This research is supported by Internal Funds KU Leuven
(STG/21/057).
Availability of data and materials The resulting metrics and used
parameters for the evaluated benchmarks are available on the KU
Leuven Research Data Repository, 10.48804/XVLHH2.

References
[1] J. D. Anderson, J. Degroote, G. Degrez, E. Dick, R. Grundmann,

and J. Vierendeels. Computational fluid dynamics: an introduction.
Springer, 2009. ISBN 978-3-540-85055-7.

[2] M. Belyaev, E. Burnaev, and Y. Kapushev. Exact Inference for
Gaussian Process Regression in case of Big Data with the Cartesian
Product Structure, July 2014. URL http://arxiv.org/abs/1403.6573.
arXiv:1403.6573 [math, stat].

[3] A. Benítez-Hidalgo, A. Nebro, J. García-Nieto, I. Oregi, and J. Del Ser.
jMetalPy: A Python framework for multi-objective optimization with
metaheuristics. Swarm and Evolutionary Computation, 51:100598, Oct.
2019. doi: 10.1016/j.swevo.2019.100598.

[4] N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiob-
jective selection based on dominated hypervolume. European Journal
of Operational Research, 181(3):1653–1669, Sept. 2007. ISSN 0377-
2217. doi: 10.1016/j.ejor.2006.08.008. URL https://www.sciencedirect.
com/science/article/pii/S0377221706005443.

[5] F. Biscani and D. Izzo. A parallel global multiobjective framework for
optimization: pagmo. Journal of Open Source Software, 5(53):2338,
Sept. 2020. ISSN 2475-9066. doi: 10.21105/joss.02338. URL https:
//joss.theoj.org/papers/10.21105/joss.02338.

[6] J. Blank and K. Deb. pymoo: Multi-Objective Optimization in Python.
IEEE Access, 8:89497–89509, 2020.

[7] J. Blank and K. Deb. GPSAF: A Generalized Probabilistic
Surrogate-Assisted Framework for Constrained Single- and Multi-
objective Optimization, Apr. 2022. URL http://arxiv.org/abs/2204.
04054. arXiv:2204.04054 [cs, math].

[8] J. Blank and K. Deb. pysamoo: Surrogate-Assisted Multi-Objective Op-
timization in Python, Apr. 2022. URL http://arxiv.org/abs/2204.05855.
arXiv:2204.05855 [cs].

[9] T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System.
In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, pages 785–794,
New York, NY, USA, Aug. 2016. Association for Computing Machin-
ery. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939785. URL
https://doi.org/10.1145/2939672.2939785.

[10] D. M. Curry and C. H. Dagli. Computational Complexity Measures
for Many-objective Optimization Problems. Procedia Computer Sci-
ence, 36:185–191, Jan. 2014. ISSN 1877-0509. doi: 10.1016/j.procs.
2014.09.077. URL https://www.sciencedirect.com/science/article/pii/
S187705091401326X.

[11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evo-
lutionary Computation, 6(2):182–197, Apr. 2002. ISSN 1941-0026.
doi: 10.1109/4235.996017. URL https://ieeexplore.ieee.org/document/
996017. Conference Name: IEEE Transactions on Evolutionary Com-
putation.

[12] R. G. L. D’Souza, K. C. Sekaran, and A. Kandasamy. Improved NSGA-
II Based on a Novel Ranking Scheme, Feb. 2010. URL http://arxiv.org/
abs/1002.4005. arXiv:1002.4005 [cs].

[13] S. M. Elsayed, T. Ray, and R. A. Sarker. A surrogate-assisted differen-
tial evolution algorithm with dynamic parameters selection for solving
expensive optimization problems. In 2014 IEEE Congress on Evolu-
tionary Computation (CEC), pages 1062–1068, July 2014. doi: 10.
1109/CEC.2014.6900351. URL https://ieeexplore.ieee.org/document/
6900351. ISSN: 1941-0026.

[14] D. Eriksson, D. Bindel, and C. A. Shoemaker. pySOT and POAP: An
event-driven asynchronous framework for surrogate optimization, July
2019. URL http://arxiv.org/abs/1908.00420. arXiv:1908.00420 [cs,
math, stat].

[15] R. Espinosa, F. Jiménez, and J. Palma. Multi-surrogate assisted multi-
objective evolutionary algorithms for feature selection in regression
and classification problems with time series data. Information Sci-
ences, 622:1064–1091, Apr. 2023. ISSN 0020-0255. doi: 10.1016/j.

ins.2022.12.004. URL https://www.sciencedirect.com/science/article/
pii/S0020025522014979.

[16] H. Fang, Q. Wang, Y.-C. Tu, and M. F. Horstemeyer. An Efficient Non-
dominated Sorting Method for Evolutionary Algorithms. Evolutionary
Computation, 16(3):355–384, Sept. 2008. ISSN 1063-6560. doi: 10.
1162/evco.2008.16.3.355. URL https://doi.org/10.1162/evco.2008.16.
3.355.

[17] F.-A. Fortin, F.-M. D. Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné. DEAP: Evolutionary Algorithms Made Easy. Journal of Ma-
chine Learning Research, 13(70):2171–2175, 2012. ISSN 1533-7928.
URL http://jmlr.org/papers/v13/fortin12a.html.

[18] A. Hasni, R. Taibi, B. Draoui, and T. Boulard. Optimization of Green-
house Climate Model Parameters Using Particle Swarm Optimization
and Genetic Algorithms. Energy Procedia, 6:371–380, Jan. 2011.
ISSN 1876-6102. doi: 10.1016/j.egypro.2011.05.043. URL https:
//www.sciencedirect.com/science/article/pii/S1876610211014548.

[19] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima. Modified Dis-
tance Calculation in Generational Distance and Inverted Generational
Distance. In A. Gaspar-Cunha, C. Henggeler Antunes, and C. C.
Coello, editors, Evolutionary Multi-Criterion Optimization, Lecture
Notes in Computer Science, pages 110–125, Cham, 2015. Springer
International Publishing. ISBN 978-3-319-15892-1. doi: 10.1007/
978-3-319-15892-1_8.

[20] M. Jensen. Reducing the run-time complexity of multiobjective EAs:
The NSGA-II and other algorithms. IEEE Transactions on Evolutionary
Computation, 7(5):503–515, 2003. doi: 10.1109/TEVC.2003.817234.

[21] D. R. Jones. A Taxonomy of Global Optimization Methods Based on
Response Surfaces. Journal of Global Optimization, 21(4):345–383,
Dec. 2001. ISSN 1573-2916. doi: 10.1023/A:1012771025575. URL
https://doi.org/10.1023/A:1012771025575.

[22] J. Knowles and D. Corne. The Pareto archived evolution strategy: a new
baseline algorithm for Pareto multiobjective optimisation. In Proceed-
ings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat.
No. 99TH8406), volume 1, pages 98–105 Vol. 1, July 1999. doi: 10.
1109/CEC.1999.781913. URL https://ieeexplore.ieee.org/document/
781913.

[23] P. Kumar K., S. Sharath, G. R. D’Souza, and K. C. Sekaran. Memetic
NSGA - a multi-objective genetic algorithm for classification of mi-
croarray data. In 15th International Conference on Advanced Com-
puting and Communications (ADCOM 2007), pages 75–80, Dec.
2007. doi: 10.1109/ADCOM.2007.114. URL https://ieeexplore.ieee.
org/document/4425954.

[24] E. Li. An adaptive surrogate assisted differential evolutionary algorithm
for high dimensional constrained problems. Applied Soft Computing,
85:105752, 2019. ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc.
2019.105752. URL https://www.sciencedirect.com/science/article/pii/
S1568494619305332.

[25] M. Liu and W. Zeng. Reducing the run-time complexity of NSGA-
II for bi-objective optimization problem. In 2010 IEEE International
Conference on Intelligent Computing and Intelligent Systems, volume 2,
pages 546–549, 2010. doi: 10.1109/ICICISYS.2010.5658387.

[26] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and
W. Banzhaf. NSGA-Net: neural architecture search using multi-
objective genetic algorithm. In Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO ’19, pages 419–427, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN
978-1-4503-6111-8. doi: 10.1145/3321707.3321729. URL https://doi.
org/10.1145/3321707.3321729. event-place: Prague, Czech Republic.

[27] S. Lucidi, M. Maurici, L. Paulon, F. Rinaldi, and M. Roma. A
Simulation-Based Multiobjective Optimization Approach for Health
Care Service Management. IEEE Transactions on Automation Sci-
ence and Engineering, 13:1–12, Oct. 2016. doi: 10.1109/TASE.2016.
2574950.

[28] M. J. Moshkov. Time Complexity of Decision Trees. In J. F. Peters and
A. Skowron, editors, Transactions on Rough Sets III, pages 244–459,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-
540-31850-7.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[30] R. S. Rai and V. Bajpai. Optimization in Manufacturing Systems
Using Evolutionary Techniques. In K. Gupta and M. K. Gupta,
editors, Optimization of Manufacturing Processes, pages 201–229.
Springer International Publishing, Cham, 2020. ISBN 978-3-030-
19638-7. doi: 10.1007/978-3-030-19638-7_9. URL https://doi.org/10.
1007/978-3-030-19638-7_9.

https://doi.org/10.48804/XVLHH2
http://arxiv.org/abs/1403.6573
https://www.sciencedirect.com/science/article/pii/S0377221706005443
https://www.sciencedirect.com/science/article/pii/S0377221706005443
https://joss.theoj.org/papers/10.21105/joss.02338
https://joss.theoj.org/papers/10.21105/joss.02338
http://arxiv.org/abs/2204.04054
http://arxiv.org/abs/2204.04054
http://arxiv.org/abs/2204.05855
https://doi.org/10.1145/2939672.2939785
https://www.sciencedirect.com/science/article/pii/S187705091401326X
https://www.sciencedirect.com/science/article/pii/S187705091401326X
https://ieeexplore.ieee.org/document/996017
https://ieeexplore.ieee.org/document/996017
http://arxiv.org/abs/1002.4005
http://arxiv.org/abs/1002.4005
https://ieeexplore.ieee.org/document/6900351
https://ieeexplore.ieee.org/document/6900351
http://arxiv.org/abs/1908.00420
https://www.sciencedirect.com/science/article/pii/S0020025522014979
https://www.sciencedirect.com/science/article/pii/S0020025522014979
https://doi.org/10.1162/evco.2008.16.3.355
https://doi.org/10.1162/evco.2008.16.3.355
http://jmlr.org/papers/v13/fortin12a.html
https://www.sciencedirect.com/science/article/pii/S1876610211014548
https://www.sciencedirect.com/science/article/pii/S1876610211014548
https://doi.org/10.1023/A:1012771025575
https://ieeexplore.ieee.org/document/781913
https://ieeexplore.ieee.org/document/781913
https://ieeexplore.ieee.org/document/4425954
https://ieeexplore.ieee.org/document/4425954
https://www.sciencedirect.com/science/article/pii/S1568494619305332
https://www.sciencedirect.com/science/article/pii/S1568494619305332
https://doi.org/10.1145/3321707.3321729
https://doi.org/10.1145/3321707.3321729
https://doi.org/10.1007/978-3-030-19638-7_9
https://doi.org/10.1007/978-3-030-19638-7_9


[31] P. C. Roy, A. Guber, M. Abouali, A. P. Nejadhashemi, K. Deb, and
A. J. M. Smucker. Crop yield simulation optimization using precision
irrigation and subsurface water retention technology. Environmental
Modelling & Software, 119:433–444, Sept. 2019. ISSN 1364-8152.
doi: 10.1016/j.envsoft.2019.07.006. URL https://www.sciencedirect.
com/science/article/pii/S1364815218305644.

[32] G. Serhat and I. Basdogan. Multi-objective optimization of com-
posite plates using lamination parameters. Materials & Design,
180:107904, Oct. 2019. ISSN 0264-1275. doi: 10.1016/j.matdes.
2019.107904. URL https://www.sciencedirect.com/science/article/pii/
S0264127519303429.

[33] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Op-
timization of Machine Learning Algorithms. In Advances in Neu-
ral Information Processing Systems, volume 25. Curran Associates,
Inc., 2012. URL https://papers.nips.cc/paper_files/paper/2012/hash/
05311655a15b75fab86956663e1819cd-Abstract.html.

[34] B. Szabó and I. Babuška. Finite Element Analysis. John Wiley & Sons,
Sept. 1991. ISBN 978-0-471-50273-9.

[35] K. D. Tran. An improved Non-dominated Sorting Genetic Algorithm-II
(ANSGA-II) with adaptable parameters. International Journal of In-
telligent Systems Technologies and Applications, 7(4):347, 2009. ISSN
1740-8865, 1740-8873. doi: 10.1504/IJISTA.2009.028052. URL http:
//www.inderscience.com/link.php?id=28052.

[36] M. Yagoubi and H. Bederina. Surrogate-Assisted NSGA-II Algorithm
for Expensive Multiobjective Optimization. In Proceedings of the Com-
panion Conference on Genetic and Evolutionary Computation, GECCO
’23 Companion, pages 431–434, New York, NY, USA, July 2023. Asso-
ciation for Computing Machinery. ISBN 9798400701207. doi: 10.1145/
3583133.3590746. URL https://doi.org/10.1145/3583133.3590746.

[37] H. Yin, H. Fang, G. Wen, Q. Wang, and Y. Xiao. An adaptive
RBF-based multi-objective optimization method for crashworthiness
design of functionally graded multi-cell tube. Structural and Mul-
tidisciplinary Optimization, 53(1):129–144, Jan. 2016. ISSN 1615-
1488. doi: 10.1007/s00158-015-1313-1. URL https://doi.org/10.1007/
s00158-015-1313-1.

[38] H. Younes, M. Alameh, A. Ibrahim, M. Rizk, and M. Valle. Efficient
Algorithms for Embedded Tactile Data Processing. In Electronic Skin.
River Publishers, 2020. ISBN 978-1-00-333806-2. Num Pages: 26.

[39] L. Zhao, Y. Hu, B. Wang, X. Jiang, C. Liu, and C. Zheng. A
surrogate-assisted evolutionary algorithm based on multi-population
clustering and prediction for solving computationally expensive dy-
namic optimization problems. Expert Systems with Applications,
223:119815, Aug. 2023. ISSN 0957-4174. doi: 10.1016/j.eswa.
2023.119815. URL https://www.sciencedirect.com/science/article/pii/
S0957417423003160.

[40] M. Zhao, K. Zhang, G. Chen, X. Zhao, C. Yao, H. Sun, Z. Huang,
and J. Yao. A surrogate-assisted multi-objective evolutionary algo-
rithm with dimension-reduction for production optimization. Jour-
nal of Petroleum Science and Engineering, 192:107192, Sept. 2020.
ISSN 0920-4105. doi: 10.1016/j.petrol.2020.107192. URL https:
//www.sciencedirect.com/science/article/pii/S0920410520302783.

[41] E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results. Evolutionary Computa-
tion, 8(2):173–195, June 2000. ISSN 1063-6560, 1530-9304. doi:
10.1162/106365600568202. URL https://direct.mit.edu/evco/article/8/
2/173-195/868.

[42] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength
pareto evolutionary algorithm. Report, ETH Zurich, Computer Engi-
neering and Networks Laboratory, Zurich, May 2001. Publication Title:
TIK Report Volume: 103.

[43] E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume indicator
revisited: on the design of pareto-compliant indicators via weighted in-
tegration. In Proceedings of the 4th international conference on Evolu-
tionary multi-criterion optimization, EMO’07, pages 862–876, Berlin,
Heidelberg, Mar. 2007. Springer-Verlag. ISBN 978-3-540-70927-5.

https://www.sciencedirect.com/science/article/pii/S1364815218305644
https://www.sciencedirect.com/science/article/pii/S1364815218305644
https://www.sciencedirect.com/science/article/pii/S0264127519303429
https://www.sciencedirect.com/science/article/pii/S0264127519303429
https://papers.nips.cc/paper_files/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
https://papers.nips.cc/paper_files/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
http://www.inderscience.com/link.php?id=28052
http://www.inderscience.com/link.php?id=28052
https://doi.org/10.1145/3583133.3590746
https://doi.org/10.1007/s00158-015-1313-1
https://doi.org/10.1007/s00158-015-1313-1
https://www.sciencedirect.com/science/article/pii/S0957417423003160
https://www.sciencedirect.com/science/article/pii/S0957417423003160
https://www.sciencedirect.com/science/article/pii/S0920410520302783
https://www.sciencedirect.com/science/article/pii/S0920410520302783
https://direct.mit.edu/evco/article/8/2/173-195/868
https://direct.mit.edu/evco/article/8/2/173-195/868

	Introduction
	Related Work
	Methodology
	Time complexity of optimization algorithms
	Population-based algorithms
	Surrogate-assisted MOEA

	Event-Driven Surrogate-Assisted Framework (EDSAF)
	Design of experiments
	Performance indicators

	Results and discussion
	Conclusion

