
Multiple Attribute List Aggregation with Applications in
Collaborative Playlist Editing and Job Scheduling

Eyal Briman1 and Nimrod Talmon1

1Ben Gurion University of the Negev

Abstract. We introduce a multi-objective decision-making model
for social choice that integrates time-based constraints, aiming to
generate a ranked list that harmonizes both agent preferences (as,
e.g., per approval ballots) together with overarching global con-
straints. First, we analyze the general model, showing that it is gen-
erally NP-hard, but admits polynomial-time algorithms for a special
case; we also develop heuristic solutions for the general case. Fur-
thermore, we explore potential applications of the model and demon-
strate its relevance by focusing on the use cases of democratic playlist
editing and democratic job scheduling. In these scenarios, our aim is
to generate a list that reflects agent preferences for a given set of
musical tracks or a given set of jobs to be processed while also con-
sidering soft constraints regarding the sequencing and transitions of
tracks or jobs over time. We illustrate how these problems can be
translated into our model, and present simulation results where we
apply our heuristics to solve specific instances of the problems. We
contend that our results are promising – as they are able to strike a
balance between the different optimization objectives – not only for
these specific use cases, but also for a plethora of other use cases.

1 Introduction

Social choice theory examines collective decision-making processes
by aggregating individual preferences to reach a collective choice
or outcome [2]. In the standard setting of single-winner elections,
a single alternative is chosen from a set of alternatives, based on
group preferences. Moving beyond single-winner elections, in multi-
winner elections — which formally generalize single-winner elec-
tions – a set of candidates or alternatives is selected, following agent
preferences [11]. Going even further, in participatory budgeting –
which formally generalizes multi-winner elections – a set of projects,
each with its cost, is selected while respecting agent preferences and
a given budget. We argue that advancements in social choice many
times correspond to the desire of having collective decision-making
tools that aggregate agent preferences and output increasingly com-
plex outputs, taking into account multiple objectives. Our proposed
social choice model can be viewed from this angle; and, correspond-
ingly, the aggregation methods that we develop can be seen as com-
putational tools that are able to aggregate agent preferences and out-
put fairly structurally-involved outputs. In particular, we consider a
social choice setting that consists of the following ingredients: (1)
A set of elements out of which a subset shall be selected (similar
to a multi-winner election); (2) where these elements have certain
numerically-valued attributes that shall be taken into consideration
(formally generalizing participatory budgeting); and (3) where the

selected subset of elements shall be ordered (similarly to ranking el-
ements, such as in proportional ranking [28]). We describe our setting
formally in Section 2. Essentially, we formulate a multi-objective
optimization problem that balances between two considerations: (1)
First, the ordered subset (i.e., list) that we output shall respect agent
preferences (we model this aspect by aiming to maximize the score
of the output list according to some multi-winner voting rule); (2)
second, the trend or pattern of the attribute values over time within
the output list (we model this aspect by aiming to minimize the dis-
tance of the corresponding patterns to “ideal”, predefined patterns).

Through the use of mathematical optimization techniques and the
development of effective heuristics, our model provides a robust
framework for tackling diverse use-cases that involve multi-attribute
decision problems in which an output list is to be agreed upon. While
in this paper we concentrate on a specific application – namely, of
democratic playlist editing – below we first describe several potential
applications of our model. Consider the following applications: (1)
Democratic Planning: Consider a cooperative manufacturing plan
for highly logistic complex products, sensitive products, or products
with occasional or seasonal demand. We aim to optimize different at-
tributes based on the social choice, ideal demand changing over time,
the ideal stock and inventory changing over time, and different mea-
sures such as service quality type 1 or 2, which will ideally change
over time to minimize costs; (2) Democratic Media: Creating con-
tent that serves different functions for various attributes over time,
for example, a TV series or a movie. The amount of stress/relief or
happiness/sadness that the show/movie creates in the viewer’s expe-
rience as the season or movie evolves can be measured.

In Section 2 we provide our formal model; then, in Sections 6, 7
we describe a different application over which we demonstrate the
applicability of our model as well as the suitability and quality of
several heuristic solutions that we propose for the model. The con-
crete applications that we concentrate on in this paper are:

• Democratic Playlist Editing: Producing a musical playlist – per-
haps to accompany a podcast, movie, TV show, theater or dance,
where there should be changes in different attributes over time,
such as tempo, loudness, and emotions that will be expressed
through the music (using chords, scales, and other musical tools).

• Democratic Job Scheduling: the goal is to create a sorted list
of jobs using a voting process that aggregates preferences of team
members. However, this process must also account for global con-
straints related to tasks’ or features’ attributes that change over
time. Sequencing these requires prior knowledge that not all team
members may possess.

Paper Structure After discussing some related work (in Sec-
tion 1.1), we go on to describe our formal model (in Section 2). Then,
as the aspect of our model that corresponds to respecting agent pref-
erences is both crucial to our model as well as general, in Section 3
we describe how to capture different multi-winner rules in our model.
We go on to provide a computational analysis of our general model
(in Section 4) and to describe various general heuristics that we pro-
pose for solving instances of the general model (in Section 5). We
continue to describe the problem of democratic playlist editing and
Democratic job scheduling in detail and in a formal way (in Sec-
tions 6, 7) and to report on computer-based simulations that we have
performed on real-world and artificial data to evaluate the relevance
and the quality of our algorithms (in Section 6). We conclude in Sec-
tion 8 with a discussion on the implications of our research and on
promising future research directions.

1.1 Related Work

We mention general related work: (1) As our model can be viewed as
a time-based social choice model, we mention ongoing work regard-
ing the aggregation of continuously-changing agent preferences [1].
(2) Second, in our work, we draw inspiration from work that com-
bines social choice aspects with recommendation systems, such as
the work of Burke et al. [8], that evolves around the exploration of
dynamic fairness-aware recommendation systems using multi-agent
social choice. (3) Third, our multi-attribute setting also has some con-
nections with work on the group activity selection problem [9].

Multi-Attribute Social Choice This involves aggregating prefer-
ences of a group over alternatives with multiple attributes. Our work
focuses on a multi-attribute setting where each element has a vector
of numerical attribute values [15, 5, 7]. Various works explore social
choice settings with different attributes, such as democratic parlia-
mentary elections aiming for proportional representation of attributes
like gender and race in society [27, 4, 6, 22, 23].

Proportional Ranking Traditional approval voting ranks alterna-
tives based on the percentage of approving voters, but it may not
accurately reflect the preferences of the population. The proportional
ranking model addresses this by interleaving alternatives supported
by different groups of agents, reflecting relative popularity. It empha-
sizes sorting candidates to ensure proportional committees, consid-
ering candidate diversity and order. This model finds applications
in recommendation systems, hiring, committee elections, and liq-
uid democracy [28]. In our work, we aim to generate rankings with
a broader scope than Skowron et al.[28]. Specifically, in Section6,
we consider proportionality in collaborative playlist editing, where
tracks are ranked based on acoustic features, popularity, and propor-
tional representation. We also mention other related works [18, 14].

Multi-Attribute Scheduling The single-machine scheduling prob-
lem involves finding the optimal order of tasks on a single machine
to minimize the total completion time or other objectives. Multi-
attribute scheduling extends this by considering multiple objectives
and constraints. It aims to find a schedule that satisfies constraints
while optimizing objectives like completion time or resource utiliza-
tion [16, 20]. Our model generalizes the multi-attribute [26] multi-
agent single-machine problem, emphasizing multi-objective opti-
mization and incorporating the social choice aspect.

2 Multi-Attribute List Aggregation (MALA)
In this section, we present the formal model of Multi-Attribute List
Aggregation (MALA). An instance of MALA consists of:

1. A set of y attributes, denoted with their index q ∈ [y].
2. A set of m elements, C = {c1, . . . , cm}. Each element ci, i ∈

[m], for each attribute q ∈ [y], has some numerical value; we
define cqi to be the numerical value of element i for attribute q (so,
in particular, cqi ∈ R).

3. A value k ≤ m, k ∈ N; this is the desired size of the list that is
the output of the instance.

4. A set of z so-called Ω constraints, denoted by {Ω1, . . . ,Ωz}.
Below we describe what is an Ω-constraint: in particular, an Ω-
constraint is defined by a tuple (q, F, d, w); next we describe what
are q, F , d, and w:

• q ∈ [y] is the index of some attribute.

• F := {f1, · · · , ft} is a family of t vectors, each of length k;
formally, fℓ ∈ Rk, ℓ ∈ [t]. We use a square brackets notation
for vectors; i.e., for ℓ ∈ [t], s ∈ [k], we write fℓ[s], fℓ[s] ∈
R, to denote the value of the s’th element of fℓ. (Intuitively,
each of these vectors corresponds to some ideal behavior of the
output list with respect to attribute q).

• d is a metric returning a distance between two real-valued vec-
tors of length k. Formally, d : Rk × Rk → R; i.e., d is a func-
tion that takes two vectors of length k and returns a numeric
value that we interpret as their distance; and it shall be a met-
ric. (Intuitively, the metric d quantifies how close-to-ideal is the
output list to at least one of the ideal vectors, with respect to the
attribute q; note that we will use d only to evaluate the distance
between some possible solution and some vector of F .)

• w ∈ R, is the weight that the Ω-constraint gets. (Intuitively, it
corresponds to the importance of that Ω-constraint.)

An instance of MALA as described above defines a cost for each
possible solution to it. To describe what it is, let solution be some
possible solution to an instance of MALA; first, formally, solution
shall satisfy the following:

• solution ∈ Ck; i.e.,., solution is a vector of k elements, each
from C.

• For s1 ̸= s2 (two different indices in solution) , it holds that
solution[s1] ̸= solution[s2]; i.e.,., there can be no repetitions.

Below we describe the cost of a possible solution solution:

• First, the cost of a solution solution with respect to a specific Ω-
constraint Ω = (q, F, d, w) is, roughly speaking, the weight (w)
multiplied by the distance (according to d) between the values of
the elements of the solution for the attribute q to the vector of F
that is the closest to it; formally, we define:

cost(solution,Ω) = w ·minf∈F d(f, solution
q) ,

where solutionq ∈ Rk is the vector containing the values of the
elements of the solution with respect to the attribute q; formally,
solutionq[s] := solution[s]q , s ∈ [k].

• Second, the cost of a solution solution with respect to an instance
of MALA MALA (that contains z Ω-constraints) is defined nat-
urally as the summation of its cost with respect to each of the
Ω-constraints; formally, we define:

cost(solution,MALA) =
∑
i∈[z]

cost(solution,Ωi) .

Given an instance of MALA, denoted by MALA, we are looking
for a solution solution of minimum cost; formally, we are looking
for the following:

arg min
solution∈Ck

solution[s1] ̸=solution[s2]
for s1 ̸=s2

cost(solution,MALA)

1

Example 1. Consider the following toy example: Jimmy would like
to prepare food to take to work and needs to decide what to bring
to each of his three meals, during the day. His decision is based on
3 attributes: (1) personal preferences, (2) calories, (3) and sugar.
His candidates are: (1) apple, (2) orange , (3) omelette sandwich ,
and (4) tuna sandwich. Each candidate is defined by its unique at-
tributes’ values. Jimmy also sets his ideal attribute values for each
one of the three meals and the importance of each attribute. Thus,
the formal instance – denoted by MALA – is given by (with some
specific data): y = 3; k = 3; and the following constraints:
q1= apple, q2= orange, q3= omelette sandwich, q4= tuna sand-
wich. F1= {f1}, where f1[1] = 10, f1[2] = 10, f1[3] = 10;
F2= {f2, f3}, where f2[1] = 80, f2[2] = 600, f2[3] = 60, and
where f3[1] = 100, f3[2] = 500, f3[3] = 80; F3= {f4, f5},
where f4[1] = 0, f4[2] = 20, f4[3] = 0, and where f5[1] =
0, f5[2] = 0, f5[3] = 0; di is the ℓ1 norm, for each i ∈ [3];
w1 = 1, w2 = 0.5, w3 = 0.8. C = {c1, c2, c3, c4} with jimmy’s
preferences given by: c11 = 7, c21 = 95, c31 = 19, c12 = 4, c22 = 60, c32 =
12, c13 = 5, c23 = 530, c33 = 15, c14 = 10, c24 = 570, c34 = 50;

A possible solution1 may be: [apple, omelette sandwich,
orange] with cost: cost(solution1,MALA) =

∑3
i=1 wi ·

(minfℓ∈Fidi(f, solution
qi) = 1 · (|10 − 7| + |10 − 5| + |10 −

4|)+0.5 · (|100−95|+ |500−530|+ |80−60|)+0.8 · (|0−19|+
|20− 15|+ |0− 12|) = 70.3.

3 Committee Scoring Rules Using MALA

Next, we will demonstrate the versatility of the MALA model for var-
ious voting rules. Our model is specifically designed for democratic
settings, making it applicable to a wide range of use cases, including
committee elections. This will be useful for both the application of
the democratic playlist editing and the application of the democratic
job scheduling, which we will discuss in detail later.

Approval Voting and Borda Count: In the case of selecting
a committee, the ideal approval score or Borda count would be
achieved if all n agents voted or ranked the same m candidates, indi-
cating a consensus. To model this, we represent the perfect approval
score and Borda count as a vector of size k where each candidate’s
score is a constant value representing the number of votes or ranking
positions they received from the n agents. Thus, this vector serves
as an upper bound for calculating the cost of a given solution. For-
mally, we define: (1) Each candidate’s voting score is given by: vot-
ing score(c1) =

∑n
i=1 ci,1 · · · , voting score(cm) =

∑n
i=1 ci,m,

and ci,j ∈ 0, 1 or ci,j ∈ 0, 1, · · · , k indicates the approval or rank-
ing of candidate j ∈ [m] by agent i ∈ [n]. (2) F1 = f1, where in
approval voting f1[s] = n, and in Borda count f1[s] = n · k, for all
s ∈ [k]. (3) d = any metric distance, such as ℓ1 or ℓ2.

1 It is worth noting that we assume all attributes can be treated as numerical,
as categorical attributes can often be transformed into numbers. However,
it would also be interesting to experiment with labeled data that cannot be
easily transformed into numerical values.

PAV Score: The PAV (Proportional Approval Voting) score assigns
scores to candidates based on the number of votes they receive, with
the goal of allocating seats to candidates proportionally to their sup-
port, while also considering the number of available seats. In our
model, each agent approves or disapproves of certain elements. We
introduce a PAV cost constraint to represent the "loss" of the po-
tential PAV score. This model can also be extended to OWA-based
rules [13]. For each agent vj ∈ v1, · · · , vn voting on elements
c1, · · · , cm, we create an Ω-constraint, and its distance will be the
"PAV-cost," reflecting the "loss" of the potential PAV score. The fol-
lowing definitions apply: (1) q ∈ [m] corresponds to every agent.
(2) solution[s]j = 1 if agent j approves of candidate i and 0 oth-
erwise, for all solution ∈ Ck. (3) F = {f1} , f1 = {[1]k}. (4)
d(x, y) =

∑k−ℓ1(x,y)
j=1

1
j
, ℓ1(x, y) < k and 0 otherwise. Given such

individual agent Ω-constraints, adding a weight vector of all "1" re-
sults in the realization of PAV as an instance of MALA.

4 Computational Analysis
To study the computational complexity of MALA we consider its de-
cision variant, in which we are given an additional input that is the
maximum total cost for which existence of a solution above is to be
decided. First, we observe that, following the formulation described
above of PAV as a MALA instance, NP-hardness is established [3].
Next we show that MALA is also NP-hard even with only 2 con-
straints.2

Theorem 1. The MALA Decision Problem is NP-hard.

Proof. We provide a reduction from the subset-sum problem [21],
where an instance X containing xi, i ∈ [n] is a “yes-instance” if a
subgroup X ′ ⊂ X exists that satisfies |X ′| = n

2
and

∑
xi∈X′ xi =∑

xi∈X xi

2
= B

2
. To build an input for the MALA decision problem

given the subset-sum input, we set the following Ω-constraints:

• q - We have a MALA problem with two identical attributes: q1, q2
having c1i = c2i = xi for all i.

• F - We set F1 = f1 where f j
1 = 0, and F2 = f2 where f j

2 = M ,
for all j ∈ [k] (vector’s length), where M =

∑
xi∈X xi.

• d - We create two distances based on the ℓ1 distance between two
given vectors:

d1(vector1, vector2) =

{
1, ℓ1(vector1, vector2) >

B
2

0, ℓ1(vector1, vector2) ≤ B
2

d2(vector1, vector2) =

{
1, ℓ1(vector1, vector2) >

M·n
2

− B
2

0, ℓ1(vector1, vector2) ≤ M·n
2

− B
2

• Weights- We set w1 = w2 = 1
2

.

We formulate the MALA model as a decision problem - Given all
candidates C and: Ω-constraints, we want to determine if there exists
a subset X ′ ⊆ X such that

∑2
i=1 cost(X

′,Ωi) = 1. If such a subset

X ′ exists, then
∑

xi∈X′ xi =
∑

xi∈X xi

2
= B

2
. Conversely, if ci,1 =

ci,2, for all i, F1 = F2, d1 = d2, and X = q1 = q2, we can

2 There is a delicate point here with respect to the representation of the input.
We discuss consequences of this to different applications in Section 8, but
here, for the formal hardness statement and proof, it is crucial to describe
the representation of the input that affects the length of the input. So, in
particular, it is sufficient to assume that the F vectors in the input are given
explicitly, while the d metrics are given as black-boxes of length O(1).

reduce the problem to the subset sum problem where |X| = n. In
this case, if there exists a subset X ′ ⊆ X such that |X ′| = n

2
and∑

xi∈X′ xi =
∑

xi∈X xi

2
= B

2
, then

∑2
i=1 cost(X

′,Ωi) = 1. Thus,
the MALA decision problem is NP-hard even with just two attributes,
contradicting our polynomial assumption of the problem.

5 Algorithms

Since our problem has been shown to be NP-hard, we have devel-
oped several heuristic algorithms to obtain a good solution within
a reasonable time frame. In this study, we have chosen to test two
main algorithms: Genetic and Simulated Annealing. Both of these
heuristics are suitable for solving similar combinatorial optimization
problems that have complex search spaces and multiple objectives.
To simplify the testing process, we make the assumption that each
vector family, denoted as F , which describes optimal behavior over
time or sequence of some feature q, has a finite set. In each of the
heuristics explained here, we aim to find the ordered sub-group of k
elements out of a total group of m elements that would minimize the
weighted summation of costs defined by Ω-constraints.

Genetic Algorithm - The algorithm begins by generating an initial
population of candidate solutions, each represented as a set of pa-
rameters. The cost of each solution is calculated based on the prob-
lem at hand. The population is then sorted based on the descending
cost, and the best solution is identified. In each iteration, the algo-
rithm updates the population size using adaptive population sizing
techniques, which adjust the number of solutions in the population
based on their performance. The crossover and mutation probabil-
ities, which control the exploration and exploitation of the search
space, are also updated adaptively [24]. New solutions are generated
through crossover or mutation operations, ensuring that there are no
repetitions among the solutions. The cost of each new solution is cal-
culated, and the population is sorted again. If the best solution in
the new population has a lower cost than the current best solution,
it is updated accordingly. The algorithm continues iterating until the
specified total run time is reached. Finally, the best solution found
throughout the iterations is returned as the output of the algorithm.

Simulated Annealing - The algorithm starts by generating an ini-
tial random solution. It then sets the initial cooling rate and temper-
ature, which are problem-dependent and determine the exploration-
exploitation balance. Additionally, a number of iterations for a ran-
dom start are specified to allow for more diverse exploration. During
each iteration, the algorithm calculates the cost of the current solu-
tion and compares it to the minimal cost found so far. If the current
cost is lower, the minimal cost is updated accordingly. The algorithm
also computes the probability of accepting a worse solution based on
an adaptive cooling rate [19]. If the probability allows accepting a
worse solution, the minimal cost is updated. To explore the search
space, a random element and index are generated. If the generated
element is included in the solution, it is swapped with the element at
the generated index. Otherwise, the element at the generated index
is replaced with the generated element. The temperature is decreased
using the cooling rate, gradually reducing the exploration ability of
the algorithm. The process continues until the specified total run time
is reached. Finally, the best solution found throughout the iterations
is returned as the output of the algorithm. 3

3 The full implementation can be found here https://github.com/EyalBriman/
MALA

6 The Democratic Playlist Editing Problem
The focus now shifts to the democratic playlist editing issue, specif-
ically the problem of creating a playlist with a specific logic or
theme. This problem, known as the Democratic Automated Gener-
ation Playlist Problem, involves a group of friends attempting to cre-
ate a playlist. In this section, we will discuss this problem and its
formulation using MALA. The Automated Generation Playlist Prob-
lem involves creating a playlist by selecting tracks from a given list
based on their musical attributes, such as scale, key, tempo (beats per
minute), time signature, loudness, valence (optimism), danceability,
and more. The Democratic Automated Generation Playlist extends
the original problem by allowing a community to vote on whether to
include tracks in a playlist. Playlist editors and critics usually look
for the following three measures in a playlist [17]:

1. Coherence of tracks - Listeners tend to like playlists with tracks
that correspond (musically and lyrically) to each other homoge-
neously [25]. In order to model the coherence of a feature using
MALA, we must find the vector of some constant value. It will
serve as a reference to measure the extent of the coherence of
the attribute’s behavior over time or over a sequence of events.
Thus, we need to search all the positive constant vectors in or-
der to find the most suitable one for Solution[q] over time. For-
mally: (1) q corresponds to cqi . (2) F = {f1, f2, · · · , ft} having
fi[s] = p, i ∈ [t], p ∈ R, for all s ∈ [k]. (3) d = ℓ1 or ℓ2.

2. Smooth transitions between two consecutive tracks - Smooth
transitions are highly valued by users as they provide a seamless
progression of attributes, whether in sequence or over time. The
primary objective of these transitions is to maintain a consistent
flow while minimizing abrupt changes in attributes value’s direc-
tion over time: (1) qj∈0,··· ,k−1 address a particular attribute, and
e, the maximum explicit number of direction changes it values
can undergo. (2) F = {f1, f2, · · · , ft} having fi = Rk, i ∈ [t],
such that 0 ≤

∑k−1
s=2 δ(sign(fi[s]− fi[s− 1]), sign(fi[s+1]−

fi[s])) ≤ e ∈ [k − 1], δ(x, y) = 0 if x = y, else δ(x, y) = 1.
(3) d = ℓ1 or ℓ2. This modeling of smooth transitions as well as
coherence, is in contradiction to our initial assuming of a finite set
of functions F . Because the modeling of these qualities depend
on the attribute’s behaviour and the actual suggested tracks; we do
not have a way of predicting what would be the ideal set of func-
tions, and so we can only approximate by giving a few reasonable
functions (a finite set of vectors).

3. Diversity -Like many democratic parliaments that ensure seats
for different groups in society (such as women and minorities)
to maintain a proportional representation of society, a playlist
should aim for representation of different attributes of the given
tracks, including genres (e.g., jazz, pop, rock, reggae, Brazilian,
Afro-beat, Indian), scales (e.g., major and minor), time signa-
tures (e.g., even and odd beat division of a track), and ranges of
tempo (e.g., Largo (very slow), Adagio (slow), Andante (medium-
slow), Moderato (medium), Allegro (medium-fast), and Presto
(fast)).While the two measures before where based on numeri-
cal valued attributes, this measure is based on categorical val-
ued attributes. Formally: (1) q corresponds to cqi ∈ [r] having
r = |P q|, and P q to be the set of categories associated with at-
tribute q. (2) F = {f0, f1, · · · , ft}, fi = {fi[s]|s ∈ k, fi[s] ∈
[r], freq(fi[s], fi) = πp∈Pq} having πp to be the optimal pro-
portion of each category of attribute q. (3) d = ℓ1 or ℓ2

Experimental Design and Analysis To evaluate the quality of the
heuristics discussed earlier, we conducted a simulation of the Demo-

https://github.com/EyalBriman/MALA
https://github.com/EyalBriman/MALA

cratic Playlist Editing problem modeled as a MALA-optimization
problem. Next, we generated ten 700-track playlists from Spotify’s
"Top 10,000 Songs Of All Times" playlist4. For each instance, we
applied the discussed algorithms to find an ordered sub-list of 250
tracks that minimized the cost within a ten-minute run. The heuristic
parameters were set as follows: simulated annealing and sequential
simulated annealing with a temperature of 1000 degrees, an initial
cooling rate of 0.003, and a random start every 1000 iterations. Ge-
netic Algorithm was initialized with an initial crossover probability
of 0.85, an initial population size of 100, and a maximum popula-
tion of 5000. The costs were normalized using a 100-random algo-
rithm, which generated 100 random permutations and selected the
one with the minimal cost. This allowed us to calculate the average
cost per minute for all 10 instances. We selected three audio features
from Spotify’s API out of 13 available features [10]: Energy (0.0 to
1.0 score representing intensity and activity), Tempo (measured in
beats per minute), and Danceability (0.0 to 1.0 score representing
suitability for dancing). These features were chosen for their sig-
nificant impact on playlist formation. Approval scores were added
to each track using an artificial society of 20 agents. An algorithm
was used to generate a list of 700 integers, ensuring a sum of 5000.
The algorithm randomly and uniformly generated approval ballots,
divided the remaining sum by the remaining iterations, and updated
the list accordingly. If there was a remaining sum, it was distributed
incrementally to randomly selected indices until reaching zero. Next,
we generated 10 families of functions (represented as vectors), each
one containing 50 different 250-sized vectors. These functions within
each family can be divided into two types:

1. We aimed for an ideal behavior of certain attributes over time,
specifically smooth transitions for BPM and energy, with 1-3 di-
rection changes to ensure smoothness along the playlist. This re-
sulted in a total of 6 families of functions.

2. We defined an ideal static value to measure the coherence of at-
tributes, where changes in direction are 0 and the slope (i.e., the
size of change between two consecutive tracks) is 0. This applies
to BPM, danceability, energy, and approval score, with the latter
only including one vector/function of "all 20s".

We developed an algorithm that takes in the minimum number of di-
rection changes, a range for the first variable in the vector (distributed
uniformly), a range for the slope between consecutive variables in
the vector (distributed uniformly), and the minimum and maximum
values to set the range of legal values in the vector. The algorithm
generates the initial direction (+ or -) uniformly and k indexes in
the range of 2-248, where k is the number of direction changes and
indexi − indexi+1 ≥ 2. Whenever the algorithm reaches one of
the indexes, or if the value of the current variable is greater than the
maximum value or smaller than the minimal value, a change of di-
rection will occur. Finally, we set the distance d as ℓ1 and generated
a weight for each Ω-constraint combination, including:

1. Energy weights for 0, 1, 2, and 3 changes of direction over time.
These weights were generated uniformly between 1 to 3, taking
into account the involvement of energy in creating a playlist.

2. Tempo weights for 0, 1, 2, and 3 changes of direction over time.
These weights were generated uniformly between 0.0001 to 0.001,
as tempo was deemed to be a feature of less importance in our
simulation.

4 https://open.spotify.com/playlist/1G8IpkZKobrIlXcVPoSIuf

3. Danceability weight for 0 changes of direction over time. These
weights were generated uniformly between 3 to 4, aiming to create
a highly danceable playlist.

4. Approval score weight for 0 changes of direction over time. These
weights were generated uniformly between 4 to 5, with the inten-
tion of creating a playlist of popular tracks.

We also tested a greedy algorithm as an additional reference, wherein
we preformed a local search for the most suitable track to fit into
every location in the list.

We executed an additional simulation to determine the time needed
for the simulated annealing algorithm to reach half the value obtained
by the 100-Random algorithm across 10 unique instances, each con-
sisting of 700 tracks. The variation included selecting and ordering
musical tracks ranging from 30 to 240 at intervals of 30.

Results and Analysis The results show that the simulated anneal-
ing algorithm achieved the lowest normalized cost quickly, with ge-
netic algorithms performing worse; and confirms that the simulated
annealing algorithm takes longer to reach half the value of zRandom
as the instance size increases. These results suggest that the simulated
annealing algorithm explores a wider range of solutions compared to
the more restrictive genetic algorithm, which converges slower due
to maintaining parental order. Alternatively, the suboptimal tuning of
initial parameters, such as adaptive crossover probability and pop-
ulation size, may explain the genetic algorithm’s performance and
could be improved with additional tuning techniques. These results
suit the findings of Piotr Faliszewski et al [12] on effective heruistics
for committee scoring rules.

7 Democratic Job Scheduling
Next we explore another application amenable to modeling using
MALA: the Democratic Job Scheduling problem. While the setting
may be more general, we concentrate here on a specific scenario for
concreteness. Our scenario involves the collaborative scheduling of
jobs among n agents, each equipped with their own preferences re-
garding the prioritization of the list of k unit-time jobs (i.e., all jobs
share a uniform execution time t). from a total set of m jobs; in par-
ticular, we consider the case where their preferences are expressed
as a ranked ballot – i.e., each agent can articulate what is her most-
preferred job, second-preferred job, etc. The job scheduling process
must factor-in the agents’ preferences while adhering to overarch-
ing constraints that dictate the preferred resource behavior associated
with the progression of each job in the scheduling. In this particular
setting, we address a scheduling task within a single assembly line
equipped with M machines. Each job requires a dedicated machine,
allowing only one job to be serviced at any given time across the M
machines. Each of the m job has the following attributes: (1) cost of
executing the job (say, in dollars); (2) power consumption (electric-
ity; say, in kilowatts), of running the job on the dedicated machine;
(3) labor requirement to execute the job, that is, the number of work-
ers needed to execute the job (say that we only have one type of
workers); (4) the machine ID needed for the job execution.

Besides these internal properties of each job, as we have ranked
ballots (i.e., ordinal ballots) of all voters to each job, we also have
an additional property for each job, namely, the Borda count for the
job, calculated using the ranked ballots. In this method (as described
above), the higher an agent values a job, the higher the job will be
ranked, resulting in a higher score within the range of 1 to k.

We have some constraints and required scheduling properties and
values: Cost: Regarding the cost, our aim is to minimize the over-

https://open.spotify.com/playlist/1G8IpkZKobrIlXcVPoSIuf

all cost associated with the job scheduling. Power Consumption:
Regarding the power consumption, we seek some coherence in the
power consumption, aiming for consistency within the specified
range (this is similar in spirit to what is discussed in the section 6).
Labor Requirements: We wish the scheduling of jobs to correspond
and harmonize with the available labor force allocated. Essentially,
we assume that, in each timestep, we have some available work force,
and our aim is to closely match the number of workers for each time
step with the predetermined working arrangement (i.e., the specified
number of available workers at every stage during the shift). If a job
requires fewer workers than available in the assembly line, then it
results in a waste of manpower; while, conversely, if a job requires
more workers than available, then it necessitates additional work-
force recruitment, which inevitably escalating costs. Maximal Job
Requirements for Each Machine: We assume that each machine
has a predefined limit of µ jobs that can be executed before a main-
tenance break must occur. And that, after reaching µ jobs on that
machine, there must be a break of τ jobs to allow effective main-
tenance, otherwise the maintenance will occur parallel to the exe-
cution of jobs, resulting in some fine, which we wish to minimize.
Most Ranked Jobs: Regarding voter preferences, we aim to posi-
tion jobs based on their Borda count, where higher-ranked jobs take
precedence and are executed earlier in the schedule.

MALA Formulation The requirements described above can be
translated naturally to MALA constraints: in the modeling formu-
lated below, essentially, any deviation from these specified ideal
behaviors would result in fines, weighted by certain weights, W .
Concretely, global constraints, representing the ideal behavior of
these attributes over time, are enforced through MALA given
a solution, denoted as a k-sized vector of jobs, solution =
[job1, job2, . . . , jobk]. Following this intuition, below we show a
formulation of the Democratic Job Scheduling usecase to the frame-
work of MALA: Ideal Cost: Let q denote a cost. jobq ∈ R repre-
sents the cost associated with each job; F = {f1} with f1 = 0k

denotes the constraint ensuring minimal job costs; d = ℓ1 or ℓ2.
Ideal Power Consumption: Let q denote kilowatts. jobq ∈ R rep-
resents the power consumption (in kilowatts) requirement for each
job; F = {f1, . . . , fz} where fi∈[z] = bk. b ∈ {0, . . . , h} denotes a
constant value between 0 kW and the upper bound of recommended
power consumption, ensuring a consistent power consumption pat-
tern; d = ℓ1 or ℓ2. Defines the distance metric concerning power
consumption. Labor Constraints: Let q denote the total number of
workers. jobq ∈ N represents the required number of workers for
each job. F = f1 where f1 = Nk, indicating the count of avail-
able workers for each job in a list of k jobs. Here, f1 outlines the
shift workforce plan, defining a shift as k × t, where t represents
the uniform execution time for each job. d = ℓ1 or ℓ2. This param-
eter defines the distance metric concerning labor constraints. Max-
imal Job Requirements for Each Machine: For each machine i
among M ∈ N machines: Let qi denote the activation for machine
i. Here, jobqi ∈ {0, 1} denotes whether machine i is needed by job
j. This implies for every job there are M − 1 machines, resulting
in attributes where jobq = 0 and one case where jobq = 1, as for
every job there is exactly one machine needed. Fi = {f1, · · · , ft}
where f j∈[k]

i∈[t] ∈ {0, 1} encompasses all possible permutations ensur-
ing a limit of µi jobs followed by a setup time of τi jobs. So, after µi

occurrences of 1s (not necessarily consecutive) , there appears τi oc-
currences of consecutive 0s. di = ℓ1 or ℓ2. This defines the distance
metric concerning machine constraints for each machine i.

Experimental Analysis (Scheduling) In a simulated scenario in-
volving a single assembly line equipped with 5 distinct machines,
a total of 750 jobs were randomly selected from a pool of 5000
artificial jobs. Each job is uniquely identified and defined by a set
of attributes as follows: Cost: Randomly distributed between 100
and 1000 uniformly; Power Consumption: Randomly distributed be-
tween 10 and 100 uniformly; Worker Requirement: Randomly dis-
tributed between 1 and 10 uniformly; Machine Assignment: Each
job is assigned to one of the five machines, determined randomly
between machine IDs 1 and 5.

Ideal vectors, denoted as F , encapsulating all these attributes were
randomly generated within the ranges expressing the values dis-
tributed the same way as outlined for the job attributes. For each
machine, 1000 potential permutations were randomly sampled rep-
resenting the maximal jobs that can be executed on the machine be-
fore it needs a setup. These permutations ensure a specified sequence
where the maximum number of jobs that can be executed (repre-
sented by µ, i.e., non-consecutive 1s) is followed by the number of
jobs required to reset the machine (denoted by τ , i.e., consecutive
0s). µ is uniformly generated between 30 and 60, while τ is uni-
formly generated between 10 and 25. Additionally, a group of 20
artificial where generated represented by generated randomly rank-
ings of 250 jobs out of the 750 jobs in such way that ensured that∑750

job=1 c(i, job) =
∑250

j=1 j for each agent i ∈ [n]. These rankings
were employed to calculate the Borda count for each job. Given the
computational complexity of this problem and the necessity to find an
optimal solution within a reasonable time frame, heuristic method-
ologies were applied. Specifically the same four heuristic algorithms
were utilized, as those employed in the democratic playlist use-case:
simulated annealing, genetic algorithms, a greedy algorithm and a z-
random algorithm (having z = 100). We created 10 instances (i.e.,
750 jobs randomly chosen from the 5000 jobs) where the task is to
find a 250 sized solution. We executed the same procedure as ex-
plained in sub section 6.

Finally, we executed an additional simulation to determine the
time needed for the simulated annealing algorithm to reach half the
value obtained by the 100-Random algorithm across 10 unique in-
stances, each consisting of 700 jobs. The variation included selecting
and ordering jobs ranging from 25 to 150 at intervals of 25.

Results and Analysis The findings indicate that the simulated
annealing algorithm rapidly achieved the lowest normalized cost,
whereas genetic algorithms performed less favorably. These results
reinforce the earlier conclusions drawn from the democratic playlist
use-case; and, as the instance size increases, the time taken for simu-
lated annealing to reach half of the 100-Random score also increases.
This observation aligns with the previous findings in the Democratic
Playlist Editing use-case. However, a notable distinction arises: not
only does it take more time to reach solutions equal to or smaller than
half the cost of 100-Random, but this time duration significantly es-
calates with the instance’s size. This suggests that the solution space
in the Democratic Scheduling use-case is notably more intricate.

8 Discussion and Outlook
We introduced the MALA framework of multiobjective optimization,
designed to establish an ordered set of candidates while striving to
discover a solution that minimizes the weighted summation of dis-
tances from the ideal behaviors of various attributes as they evolve
over time and demonstrated its applicability.

In future research, we suggest exploring: adding logical con-
straints; a time-axis; several dimensions; other heuristic solutions;

a careful computational analysis of special cases of MALA; further
experiments; and further, diverse application domains.

References

[1] Anonymous. Continuous preference aggregation in one dimension,
2023.

[2] K. J. Arrow, A. Sen, and K. Suzumura. Handbook of Social Choice and
Welfare, volume 2. Elsevier, Cambridge University Press, 2010.

[3] H. Aziz. Proportional representation in approval-based committee vot-
ing and beyond, 2018. URL https://arxiv.org/abs/1802.00882.

[4] H. Aziz. A rule for committee selection with soft diversity constraints,
2018. URL https://arxiv.org/abs/1803.11437.

[5] W. Bossert and H. Peters. Multi-attribute decision-making in indi-
vidual and social choice. Mathematical Social Sciences, 40(3):327–
339, 2000. URL https://EconPapers.repec.org/RePEc:eee:matsoc:v:40:
y:2000:i:3:p:327-339.

[6] R. Bredereck, P. Faliszewski, A. Igarashi, M. Lackner, and P. Skowron.
Multiwinner elections with diversity constraints. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018.

[7] R. Burke, N. Mattei, V. Grozin, A. Voida, and N. Sonboli. Multi-
agent social choice for dynamic fairness-aware recommendation. In
Adjunct Proceedings of the 30th ACM Conference on User Modeling,
Adaptation and Personalization, UMAP ’22 Adjunct, page 234–244,
New York, NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450392327. doi: 10.1145/3511047.3538032. URL https:
//doi.org/10.1145/3511047.3538032.

[8] R. Burke, N. Mattei, V. Grozin, A. Voida, and N. Sonboli. Multi-agent
social choice for dynamic fairness-aware recommendation. In Adjunct
Proceedings of the 30th ACM Conference on User Modeling, Adapta-
tion and Personalization, pages 234–244, 2022.

[9] A. Darmann, E. Elkind, S. Kurz, J. Lang, J. Schauer, and G. Woeginger.
Group activity selection problem. In Internet and Network Economics:
8th International Workshop, WINE 2012, Liverpool, UK, December 10-
12, 2012. Proceedings 8, pages 156–169. Springer, 2012.

[10] D. Duman, P. Neto, A. Mavrolampados, P. Toiviainen, and G. Luck.
Music we move to: Spotify audio features and reasons for listening.
PLOS ONE, 17(9):1–18, 09 2022. doi: 10.1371/journal.pone.0275228.
URL https://doi.org/10.1371/journal.pone.0275228.

[11] P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. Multiwinner vot-
ing: A new challenge for social choice theory. Trends in computational
social choice, 74(2017):27–47, 2017.

[12] P. Faliszewski, M. Lackner, D. Peters, and N. Talmon. Effective heuris-
tics for committee scoring rules. In Proceedings of the AAAI Conference
on ArtificialIntelligence, volume 32, 2018.

[13] P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. Commit-
tee scoring rules: Axiomatic characterization and hierarchy. CoRR,
abs/1802.06483, 2018. URL http://arxiv.org/abs/1802.06483.

[14] J. Goldsmith, J. Lang, N. Mattei, and P. Perny. Voting with rank depen-
dent scoring rules, 2014.

[15] S. Gupta, P. Jain, and S. Saurabh. Well-structured committees. In
C. Bessiere, editor, Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI-20, pages 189–195, IJ-
CAI Yokohama Japan, 7 2020. International Joint Conferences on Ar-
tificial Intelligence Organization. doi: 10.24963/ijcai.2020/27. URL
https://doi.org/10.24963/ijcai.2020/27. Main track.

[16] S. K. Gupta and J. Kyparisis. Single machine scheduling research.
Omega, 15(3):207–227, 1987. ISSN 0305-0483. doi: https://doi.org/
10.1016/0305-0483(87)90071-5. URL https://www.sciencedirect.com/
science/article/pii/0305048387900715.

[17] S. Ikeda, K. Oku, and K. Kawagoe. Analysis of music transition in
acoustic feature space for music recommendation. In Proceedings of
the 9th International Conference on Machine Learning and Computing,
ICMLC 2017, page 77–80, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450348171. doi: 10.1145/3055635.
3056602. URL https://doi.org/10.1145/3055635.3056602.

[18] J. Israel and M. Brill. Dynamic proportional rankings. arXiv preprint
arXiv:2105.08043, 2021.

[19] M. Karabin and S. J. Stuart. Simulated annealing with adaptive cooling
rates. The Journal of Chemical Physics, 153(11):114103, 2020. doi:
10.1063/5.0018725. URL https://doi.org/10.1063/5.0018725.

[20] D. Karger, C. Stein, and J. Wein. Scheduling algorithms, 2010.
[21] R. M. Karp. Reducibility among combinatorial problems. Springer,

Berkeley University, California, USA, 1972.
[22] J. Lang and P. Skowron. Multi-attribute proportional representation.

Artificial Intelligence, 263:74–106, 2018. ISSN 0004-3702. doi: https:

//doi.org/10.1016/j.artint.2018.07.005. URL https://www.sciencedirect.
com/science/article/pii/S0004370218304089.

[23] J. W. Lian, N. Mattei, R. Noble, and T. Walsh. The conference paper as-
signment problem: Using order weighted averages to assign indivisible
goods, 2018.

[24] F. G. Lobo and C. F. Lima. A review of adaptive population sizing
schemes in genetic algorithms. In Proceedings of the 7th Annual Work-
shop on Genetic and Evolutionary Computation, GECCO ’05, page
228–234, New York, NY, USA, 2005. Association for Computing Ma-
chinery. ISBN 9781450378000. doi: 10.1145/1102256.1102310. URL
https://doi.org/10.1145/1102256.1102310.

[25] S. Pauws and B. Eggen. Realization and user evaluation of an au-
tomatic playlist generator. Journal of New Music Research, 32(2):
179–192, 2003. doi: 10.1076/jnmr.32.2.179.16739. URL https://www.
tandfonline.com/doi/abs/10.1076/jnmr.32.2.179.16739.

[26] P. Perez-Gonzalez and J. M. Framinan. A common framework and tax-
onomy for multicriteria scheduling problems with interfering and com-
peting jobs: Multi-agent scheduling problems. European Journal of
Operational Research, 235(1):1–16, 2014.

[27] S. K. Sikdar. Optimal multi-attribute decision making in social choice
problems. Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180,
USA, 2018.

[28] P. Skowron, M. Lackner, M. Brill, D. Peters, and E. Elkind. Proportional
rankings, 2016. URL https://arxiv.org/abs/1612.01434.

https://arxiv.org/abs/1802.00882
https://arxiv.org/abs/1803.11437
https://EconPapers.repec.org/RePEc:eee:matsoc:v:40:y:2000:i:3:p:327-339
https://EconPapers.repec.org/RePEc:eee:matsoc:v:40:y:2000:i:3:p:327-339
https://doi.org/10.1145/3511047.3538032
https://doi.org/10.1145/3511047.3538032
https://doi.org/10.1371/journal.pone.0275228
http://arxiv.org/abs/1802.06483
https://doi.org/10.24963/ijcai.2020/27
https://www.sciencedirect.com/science/article/pii/0305048387900715
https://www.sciencedirect.com/science/article/pii/0305048387900715
https://doi.org/10.1145/3055635.3056602
https://doi.org/10.1063/5.0018725
https://www.sciencedirect.com/science/article/pii/S0004370218304089
https://www.sciencedirect.com/science/article/pii/S0004370218304089
https://doi.org/10.1145/1102256.1102310
https://www.tandfonline.com/doi/abs/10.1076/jnmr.32.2.179.16739
https://www.tandfonline.com/doi/abs/10.1076/jnmr.32.2.179.16739
https://arxiv.org/abs/1612.01434

	Introduction
	Related Work

	Multi-Attribute List Aggregation (MALA)
	Committee Scoring Rules Using MALA
	Computational Analysis
	Algorithms
	The Democratic Playlist Editing Problem
	Democratic Job Scheduling
	Discussion and Outlook

