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Abstract. Based on a set-valued generalization of expectiles,
known from regression analysis and statistics, new categorization
and ranking procedures for multi-dimensional data points are pro-
posed. The ranking is extended to sets of alternatives.

1 Introduction

The ranking problem in Multi-Criteria Decision Analysis is to find a
complete order for a number of multi-dimensional alternatives, i.e.,
order them in such a way that one can always say which of two
given alternatives is ranked higher or at least equal than the other.
In most cases, there is an underlying non-complete order relation
which is very intiutive: the problem is that for this relation some
pairs of alternatives are not comparable. The most popular example
is the component-wise order which is used when an alternative is de-
scribed via several numerical criteria. In this case, one alternative can
be better with respect to some of the criteria than another, but worse
with respect to other criteria.

The ranking, i.e., the transition from a non-complete to a complete
order, usually comes with a loss of information: one cannot tell any-
more if a higher ranked alternative was already better with respect to
the original order or if the higher rank is due to the ranking procedure
itself.

Similarly, if one wants to categorize multi-dimensional data points
in, say, the “good" ones and the “bad" ones, for example, with respect
to the component-wise order in d > 1 dimensions, it might happen
that some points are neither “good," nor “bad," but just not categoriz-
able (yet). Such a categorization is certainly a valid goal and useful
for learning procedures when an intuitive order relation for the multi-
dimensional data points is present as for the evaluations of objects
like songs, movies, projects etc. with respect to several criteria.

The aim of this paper is threefold. First, a categorization of multi-
dimensional data points is proposed which is based on a set-valued
generalization of expectiles, a statistical concepts which can be un-
derstood as be in between the expected value and a quantile—both
used to order one-dimensional data in statistics. Secondly, a new
ranking procedure for multi-dimensional alternatives is introduced
which is based on set-valued expectiles. Finally, the ranking proce-
dure is extended to rankings of sets of alternatives in the spirit of
[6, 7].

An open problem is formulated about the coupling of the sug-
gested procedure with a dimension reduction technique to avoid the
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‘curse of dimension’ and remove correlations. Results in this direc-
tion would open the path for using the proposed method effectively
in Machine Learning and Data Analysis.

2 Notation and basic problem
The symbols IN and IR are used for the sets of natural (including 0)
and real numbers, respectively.

Let d ∈ IN\{0, 1} and C ⊆ IRd be a proper closed convex cone.
This means that C is a closed set satisfying sC = C for all s ≥ 0,
C + C = C, C ̸∈ {∅, IRd}. It generates a vector preorder ≤C

(a reflexive and transitive relation which is compatible with addi-
tion and multiplication with non-negative numbers) via y ≤C z iff
z−y ∈ C. Special cases are the zero cone C = {0} and closed half-
spaces C = H+(w) := {z ∈ IRd | wT z ≥ 0} for w ∈ IRd\{0}
as well as, of course, C = IRd

+ which generates the component-wise
order for d-dimensional vectors. The symbol y <C z is used for
z − y ∈ intC where intC ̸= ∅ is assumed.

Let N ∈ IN\{0, 1} alternatives be given, i.e., a set X =
{x1, . . . , xN} ⊆ IRd. The problems addressed in this paper are

• clustering/categorizing the points in X into points which dominate
many other points, points which are dominated by many others,
both with respect to the order ≤C , and those to which neither one
criterion applies where it has to be specified what is understood
by “many,"

• rank the points in X by means of a function r : X → IR which
satisfies

y ≤C z ⇒ r(y) ≤ r(z), (1)

• rank sets A,B ⊆ X of alternatives instead of single points.

3 Categorization via expectiles
Univariate expectiles are defined in [5] as unique solutions of mini-
mization problems for asymmetric quadratic expected loss functions;
such minimization problems facilitate the so-called expectile regres-
sion. The necessary optimality condition for this problem gives the
α-expectile eα(X) of X with 0 < α < 1 as unique solution of the
equation

αIE(X − e)+ = (1− α)IE(X − e)−, (NOC)

see [1, 5]. This equation makes sense for any random variable
X : Ω → IR for which the expected value IE(X) exists. The pos-
itive and the negative part of a number x ∈ IR used in (NOC) are
defined as x+ = max{x, 0} and x− = max{−x, 0}.



The sample version of the above equation with the data points
x1, . . . , xN ∈ IR becomes

α
∑
xn>e

(xn − e) = (1− α)
∑
xn<e

(e− xn). (2)

It can been understood as finding a number e which makes the sum
of positive differences between data points and e weighted with α
equal to the negative sum of the negative differences weighted with
1 − α. One may see from this that this number e is just the average
of the x-values if α = 1

2
and that a greater α produces a greater e.

The uniques solution of (2) is called sample expectile of the data
set X = {x1, . . . , xN} and is denoted by eN,α(X). The sample
expectile divides the data points into two categories, the ones which
are less than eN,α(X) and the ones which are greater or equal.

If the data points are multi-dimensional, i.e., X =
{x1, . . . , xN} ⊆ IRd with d ≥ 2, it is much harder to define
the sample expectile which incorporates the order ≤C generated by
C such that the data points can be categorized. A recent proposal is
from [2] and gives a set-valued analog to eN,α(X). The first step is
to define the expectile for projected data points. For w ∈ C+\{0}
the unique solution e = eN,α,w(X) of the equation

α
∑

w⊤xn>e

(w⊤xn − e) = (1− α)
∑

w⊤xn<e

(e− w⊤xn) (3)

is the α-expectile for the set of numbers w⊤X :=
{w⊤x1, . . . , w⊤xN} where w⊤x denotes the usual scalar product
of the two vectors w, x ∈ IRd. The following definition is a sample
version of the one from [2].

Definition 1 For 0 < α < 1, the set

EN,α
−C (X) =

⋂
w∈C+

{z ∈ IRd | w⊤z ≤ eN,α,w(X)} (4)

is called the downward cone α-expectile set and the set

EN,1−α
C (X) =

⋂
w∈C+

{z ∈ IRd | w⊤z ≥ eN,1−α,w(X)} (5)

the upward cone α-expectile set of X .

Indeed, the sets EN,α
−C (X), EN,1−α

C (X) can be used as tools for a
categorization of the data points in X . However, as the following ex-
ample shows a third category of data points appears: in addition to the
“good" points and the “bad" points, there are points which are neither
good, nor bad and cannot yet be categorized. This is of course due to
the fact that the order relation ≤C is not complete in general which
means that there are non-comparable points—in contrast to the usual
≤-order for the real numbers. Figure 1 shows an example with data
from a currency exchange market with transaction costs between the
three currencies. This means that the buyer’s and the seller’s price
for an exchange, say, EUR into USD, are different which leads to a
convex cone, called the solvency cone in finance. The red points in
the figure stand for holdings of the UK central bank’s asset reserves
in three currencies: US Dollar (USD), Euro (EUR) and British ster-
ling (GBP) in millions. The data are taken from the website of Bank
of England (BOE), for 39 periods (quarters) from September 2013
to December 2022 and can be made available upon request to the
authors.

For α = 0.25, the upper right part in Figure 1, taken from [2], is
the set EN,1−α

C (X) while the lower left is the set EN,α
−C (X) (only the

corresponding boundaries are shown) each containing some of the
data points. Between these two sets, the “non-categorizable" points
can be found. An increase of α would move these two sets fur-
ther apart, thus making more points “non-categorizable." A decrease,
likewise, would move the sets closer together. The determination of
α thus is a subjective decision and depends on the purpose of the
categorization process: if one wants to find “really good" and “re-
ally bad" points, α would be chosen closer to 1 in which case one
does not care that many points cannot be categorized. If, on the other
hand, one wants to categorize as many points as possible, one would
choose α closer to 1

2
.

Figure 1. 3D categorization via expectile sets for financial positions.

A few basic properties of the categorizing sets are collected in the
following result.

Proposition 2 The expectile category sets satisfy
(i) EN,α

−C (X)−C = EN,α
−C (X), EN,1−α

C (X)+C = EN,1−α
C (X),

(ii) X ≤C Y implies EN,α
−C (X) ⊆ EN,α

−C (Y ), EN,1−α
C (X) ⊇

EN,1−α
C (Y ).
(iii) EN,α

−C (AX + b) = AEN,α
−C (X) + b, EN,1−α

C (AX + b) =

EN,1−α
C (X) + b for all b ∈ IRd and invertible d× d-matrices A.
(iv) if 0 < α ≤ β < 1, then EN,α

−C (X) ⊆ EN,β
−C (X),

EN,1−α
C (X) ⊆ EN,1−β

C (X).

The proof of this result along with more properties of expectile
sets can be found in [2].

4 Expectile rank functions for multi-criteria
decision making

The following definitions provides two expectile-based functions
which turn out to be useful for ranking procedures.

Definition 3 The functions D−C(·;X), DC(·;X) : IRd → [0, 1]
defined by

D−C(z;X) = inf{α ∈ (0, 1) | z ∈ EN,α
−C (X)}

DC(z;X) = sup{β ∈ (0, 1) | z ∈ EN,β
C (X)}



are called downward and upward expectile rank function generated
by X , respectively.

Proposition 2 (iv) ensures that the set EN,α
−C (X) shrinks if α de-

creases. Thus, D−C(z;X) yields the least value of α such that z is
still caught by EN,α

−C (X), and one can expect that z can be found on
the boundary of EN,α

−C (X) for α = D−C(z;X). This is illustrated
in Figure 2: the dashed lines are the boundaries of the sets EN,α

−C for
different α’s and the level sets of D−C(·;X) at the same time. A
similar interpretation applies to DC(z;X) with reverse direction of
movement: EN,β

C (X) shrinks if β increases.
The expectile rank functions indeed satisfy (1), i.e., they can be

used to rank the points in X .

Proposition 4 If y, z ∈ IRd satisfy y ≤C z, then D−C(y;X) ≤
D−C(z;X) and DC(y;X) ≤ DC(z;X).

PROOF. The proof is shown for DC , the one for D−C runs parallel.
Assume y ≤C z, i.e., z − y ∈ C. Proposition 2 (i) implies{

β ∈ (0, 1) | y ∈ EN,β
C (X)

}
⊆

{
β ∈ (0, 1) | z ∈ EN,β

C (X)
}
.

since z = y+ (z− y) ∈ y+C. Taking the supremum on both sides
of this inclusion yields the result.

Figure 2 shows how to spot the downward and upward expectile
ranks of a point in IR2 for a two dimesional data set and C = IR2

+.
The data points in X are generated as a sample of a bivariate dis-
tribution taken via the Gumbel copula in which the two marginal
distributions are the normal distribution N(7, 4) and the gamma dis-
tribution Γ(α = 4, β = 3). The downward expectile rank of the
"red" point z is D−IR2

+
(z;X) = 0.35 and its upward expectile rank

is DIR2
+
(z;X) = 0.2. This example is taken from [2]. One may also

realize from this picture that data points which are not comparable
component-wise can have the same (such as z and y) or (very) dif-
ferent values of the ranking functions D−IR2

+
, DIR2

+
.

5 Ranking of sets of alternatives
Let A,B ⊆ IRd be two finite sets of alternatives, for example, the
outcomes of two runs of algorithms for a multi-objective optimiza-
tion problem. If maximization is the goal, then A is certainly pre-
ferred over B, written A ⪰C B, if

∀b ∈ B, ∃a ∈ A : b ≤C a.

The relation ⪰C on the power set P(IRd) is reflexive, transitive,
but not antisymmetric even if ≤C is. See [3] for this fact and many
more details and references. Moreover, it is of course not complete
which means that it is the rule rather than the exception that two sets
A,B ⊆ IRd neither satisfy A ⪰C B, nor B ⪰C A. This relation has
been used in [6] to compare outcomes of evolutionary algorithms for
multi-objective optimization problems.

A ranking which maintains ⪰C is therefore desirable, i.e., a func-
tion R : P(IRd) → IR which satsifies

A ⪰C B ⇒ R(A) ≥ R(B). (6)

Such a ranking is given in the next definition.

Definition 5 The functions D△
C(·;X), D▽

C(·;X) : P(IRd) → IR
defined by

D△
C(A;X) = sup

a∈A
DC(a;X) and D▽

C(A;X) = inf
a∈A

DC(a;X)

is called the upper and lower expectile set rank function, respectively.

Figure 2. Downward and upward expectile ranks of points in 2D.

Proposition 6 The function D△
C(·;X) satisfies (6), i.e., it is mono-

tone with respect to ⪰C .

PROOF. Since the upward expectile rank function DC is monotone
(see Proposition 4), the definition of ⪰C gives

∀b ∈ B, ∃a ∈ A : DC(b;X) ≤ DC(a;X).

Taking the supremum over B and A on the left and right side of this
inequality, respectively, yields the desired inequality.

Remark 7 If minimization is the goal, the relation ⪰C is not appro-
priate anymore. Instead, one can use A ⪰C B defined by

∀a ∈ A, ∃b ∈ B : b ≤C a.

It is well-known that ⪰C also is reflexive and transitive, but different
from ⪰C , see [3]. The reader may easily verify that the lower ex-
pectile rank function D▽

C(·;X) is monotone w.r.t. ⪰C . The relation
⪰C has also been used for ranking the outcome sets of evolutionary
algorithms for multi-objective optimization problems [7].

6 Conclusion and open problems
A new procedure for categorization and ranking of multi-
dimensional data points based on expectiles is proposed. This is an-
other instance of transferring a statistical functions into a ranking
function which complements the idea of [4] where quantile functions
have been used in a similar way.

However, in many applications, the dimension d is large and there
is correlation present among the data points. For example, data points
can be essentially confined to lower dimensional subspaces of IRd.



Moreover, a visualization of data features is only possible in dimen-
sions 2 or 3. Therefore, it is highly desirable to couple a dimension
reduction technique such as principal component or factor analysis to
reduce the dimension to a number 1 ≤ m < d and adjust the expec-
tile sets as well as the expectile rank functions for this situation. This
is an open research problem which will be pursued by the authors in
the future.
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