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Abstract. In many real-world problems, finding the optimal deci-
sion for a decision-maker depends on another decision-maker’s re-
sponse, and it is called bilevel optimization in mathematical pro-
gramming. It contains two levels of optimization problems while one
appears as a constraint of another one called follower and leader, re-
spectively. In many real-world scenarios, the lower level has multiple
global optima and the upper level needs to make worst-case assump-
tions about the decision of the lower level, called the pessimistic case
of the bilevel problem. Various approaches have been implemented
over the years to solve generic bilevel problems, but few of them
could be extended to pessimistic cases. In this short paper, we first
propose a new formulation for the pessimistic case. In this way, we
take advantage of the hierarchical structure of bilevel problems to
make the results more accurate for pessimistic cases. Then, we im-
plement a black-box approach to solve the pessimistic upper level
problem to decrease the necessary function evaluations. The perfor-
mance of the problem is examined by solving a test benchmark prob-
lem from the literature.

1 Introduction

Many large-scale decision-making processes are hierarchical in
terms of the obtained outcome of any decision taken by the upper-
level authority to optimize their goals is affected by another decision
considered as the response of lower-level entities who aim to opti-
mize their own goals. For any given upper-level decision, there is a
parametric lower-level optimization problem. The structure of these
problems is asymmetric: the leader has perfect knowledge about the
followers’ objectives and constraints, while the follower must first
observe the leader’s decision before making their own decisions.
Bilevel optimization problems have been used to formulate many
real-world hierarchical problems over the years. It has worked suc-
cessfully in the field of traffic and transportation [24, 25, 9], pro-
duction and capacity planning [17, 23], management science [5, 10],
energy networks [16, 34] and defence industry [1, 15].

There are two roots in terms of the research on decision-making
problems with a hierarchical structure. The first one is in the domain
of mathematical programming and the second one is in the domain
of game theory. In the context of game theory, von Stackelberg [30]
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built a descriptive model of decision behaviour and provided game-
theoretic equilibria. In the context of mathematical programming, an
inner optimization problem appears as a constraint of an outer opti-
mization problem which is called the bilevel optimization problem
(BOP) [6]. They were introduced by J. Bracked and J. McGill, and
a defence application was published by the same authors in the fol-
lowing year [7]. BOPs were modelled as mathematical programs at
this time and are difficult to handle mathematically because of the
hierarchical optimization structure. It may introduce difficulties such
as non-convexity and disconnectedness between the upper-level and
lower-level problems, even for simple instances. It has been shown
that bilevel programming is strongly NP-hard [19], and it has been
proven that just evaluating a solution is also an NP-hard task [31].

An uncertainty appears when the lower level problem is multi-
modal, meaning that it has several global optima. Considering the
presence of multiple lower-level optimal solutions for some xu val-
ues, there are two approaches have been proposed in [12], called op-
timistic and pessimistic approaches. In the optimistic case, the upper
level assumes that the lower level will select the most optimal solu-
tion also for the upper level. In the pessimistic approach, the upper
level is making the worst assumption while optimizing her problem
about the lower level. The assumption in the optimistic approach is a
cooperation of the lower level with the upper level without any bene-
fit, which is not realistic. On the other hand, the pessimistic approach
can be considered more cautious and can be explained minimising
the risk for the worst case. Hence, finding the solutions for the pes-
simistic case has vast importance in practice. For instance, an inter-
diction game has various applications such as critical infrastructure
defence, nuclear weapon projects and attacker-defender problems.
The leading decision-maker needs to consider the non-cooperative
defender to make the optimal decision. In general, the framework
for solving these problems is hierarchical sequential decision-making
considering the worst-case assumptions which is the pessimistic case
of bilevel problems.

There are several approaches have been developed to solve pes-
simistic BOPs, including classical and evolutionary algorithms. In
the classical approaches, [13] focused on specific mathematical prop-
erties such as solving linear pessimistic BOPs and [22] proposed
an algorithm to solve pessimistic quadratic-linear BOPs. In the hy-
brid and evolutionary approaches, [3] developed a particle swarm
optimization-based approach. [2] proposed a differential evolution-



based algorithm with a multi-objective lower level problem. A fully
evolutionary algorithm is proposed in [4] and they optimized the up-
per level for both optimistic and pessimistic approaches and then pre-
sented both. A survey about solving pessimistic BOPs and the opti-
mality condition can be found in [21, 28]. To the best of our knowl-
edge, there is no hybrid method with a black-box approach at upper
level and exact approach at lower level to solve pessimistic BOPs.

The proposed approaches in the literature are expensive-to-
evaluate in terms of function evaluations because of the nature of
the evolutionary algorithms. In this study, we propose a new formu-
lation for the pessimistic approach to tackle this obstacle with multi-
objective upper level problems and aim to solve with a hybrid ap-
proach. The upper level decision maker has full knowledge about the
follower and its constraints, so following this idea, we restructure
the upper level problem by adding lower level objectives in the op-
posite direction. Then, we aim to solve multi-objective upper level
problems. The algorithm has a nested structure, so we first optimize
black-box upper level objectives and select the best candidate from
the Pareto front. Then for each upper level decision, the lower level
optimization is conducted. The Bayesian method solves the upper-
level multi-objective problem by optimizing the hypervolume im-
provement acquisition function. In this way, there is no need to make
any assumption about the mathematical structure of the problem such
as differentiability, non-convexity, etc. It also gives us the leverage
of batch selection which comes with making multiple decisions at
the same time to observe lower level responses. An exact algorithm
solves the lower level problem to avoid the local minima and we fo-
cus on upper level decision-making with the pessimistic approach.
We conducted experiments with the test benchmark problem with
known global optima.

The rest of the paper is organized as follows. The optimistic and
pessimistic formulations are defined in Section 2. In Section 3, we
proposed the new formulation and explained the steps of the algo-
rithm. The experimental details and empirical results are explained
in Section 4. Finally, we conclude the paper in Section 6 and discuss
with the future directions of the research.

2 Preliminaries

In this section, we provide a general formulation of BOPs and pre-
liminaries for the proposed algorithm. Also, we discuss and formu-
late optimistic and pessimistic positions for BOPs which are being
assumed by the leader.

We shall represent the leader decision by xu and the follower re-
sponse by x∗

l . A decision pair xu, x
∗
l represents the leaders’ decision

and an optimal feasible solution of the follower. Both optimistic and
pessimistic formulations are shared in Definitions 1 and 2.

Definition 1. For the upper-level objective function F : Rn×Rm →
R and lower-level objective function f : Rn × Rm → R, optimistic
bilevel optimization problem is given by

min
xu

F (xu, xl)

s.t. xl ∈ argmin
xl

{
f(xu, xl) : gj(xu, xl) ≤ 0,

j = 1, 2, . . . , J

}
Gk(xu, xl) ≤ 0, k = 1, 2, . . . ,K

(1)

where xu ∈ XU , xl ∈ XL are vector-valued upper-level and lower-
level decision variables, and XU ⊆ Rn, XL ⊆ Rm decision spaces,
Gk and gj represent the constraints of the bilevel problem.

Definition 2. For the upper-level objective function F : Rn×Rm →
R and lower-level objective function f : Rn×Rm → R, pessimistic
bilevel optimization problem is given by

min
xu

max
xl

F (xu, xl)

s.t. xl ∈ argmin
xl

{
f(xu, xl) : gj(xu, xl) ≤ 0,

j = 1, 2, . . . , J

}
Gk(xu, xl) ≤ 0, k = 1, 2, . . . ,K

(2)

where xu ∈ XU , xl ∈ XL are vector-valued upper-level and lower-
level decision variables, and XU ⊆ Rn, XL ⊆ Rm decision spaces,
Gk and gj represent the constraints of the bilevel problem.

Bayesian optimization (BO) is a method to optimize expensive-
to-evaluate black-box functions. BO uses a probabilistic surrogate
model, typically Gaussian process (GP) [27], p(f |D) to model the
objective function f based on previously observed data points, that
can be declared as D = {(x1, y1), . . . , (xn, yn)}. GPs are models
that are specified by a mean function µ(x; {xn, yn}, θ) : Rd −→ R
and predictive variance function σ(x; {xn, yn}, θ) : Rd ×Rd −→ R.
Surrogate model p(f |D) is assisted by an acquisition function α :
X −→ R. We represent acquisition functions depending on the previ-
ous observations as α(x; {xn, yn}, θ) where θ is Gaussian parame-
ters such as a kernel for the model. Because the objective function is
expensive to evaluate and the surrogate-based acquisition function is
not, it can be optimized more easily than the true function to yield
xnew. The acquisition function selects the point xnew that maxi-
mizes the acquisition function xnew = argmaxx∈Xα(x). Then,
it evaluates the objective function ynew = f(xnew) and updates the
data set with new observations D ←− D ∪ (xnew, ynew).

In the GP, µ(x) can be viewed as the prediction of the func-
tion value, and σ(x) is a measure of the uncertainty of the predic-
tion. Multi-objective BO tackles the problem of optimizing a vector-
valued objective f(x) : Rd → Rd with f(x) = (f1(x), . . . , fd(x))
for a vector-valued decision variable x ∈ Rd. Because of the na-
ture of the multi-objective black-box problems, we assume that
there is no known analytical expression. Multi-objective optimiza-
tion problems generally do not have a single best solution, so we
must find a solution set instead of a single solution: the set of
Pareto-optimal solutions. We say that f(x) dominates another so-
lution f(x′) if f (i)(x) ≻ f (i)(x′) for all i = 1, 2, . . . ,M and

there exists i′ ∈ {1, 2, . . . ,M} such that f i
′
(x) ≻ f i

′
(x′). So

we can express the Pareto-optimal solution set by P ∗ = {f(x) s.t.
∄x′ ∈ X : f(x′) ≻ f(x)} and X∗ = {x ∈ X s.t. f(x) ∈ P ∗}. Af-
ter obtaining the Pareto-front, the decision maker can make decisions
using the trade-off between objectives, or any preferences.

Hypervolume improvement (HVI) is often used as a measure of
improvement in multi-objective problems [32]. Several methods have
been proposed. Expected Hypervolume Improvement (EHVI) is an
updated version of Expected Improvement (EI) to HVI, and deter-
mined by J(x) = Ep(f(x)|Dn)[HV I(f(x))]. It aims to maximize
the expected hypervolume improvement at each Bayesian iteration
and consider it as acquisition function. More details can be found in
[32].

3 Methodology
3.1 A New Formulation for Pessimistic BOPs

Bilevel problems have asymmetric structure, meaning that upper
level has complete information about lower level objectives and con-
straints despite the lower level having no idea about upper level ones.



Also, the pessimistic approach assumes that the upper level will make
a decision with the worst case assumption about the decision of lower
level. Therefore, we can reformulate the single-objective upper level
problem by adding the lower level objective with opposite direction
as in Equation 3.

min
xu

{
F (xu, xl),−f(xu, xl)

}
s.t. Gk(xu, xl) ≤ 0, k = 1, 2, . . . ,K

(3)

where Gk(xu, xl) is upper level constraints. Then the upper level is
supposed to be optimized a multi-objective manner and the optimal
decision is chosen from the Pareto front solution set that contains
multiple feasible solutions. Multiple approaches are proposed for se-
lecting the decision from the Pareto front, such as [8, 14]. As the
Pareto front has multiple feasible solutions, we made a random se-
lection at each step.

For generalization, Equation 3 can be expressed as pessimistic
multi-objective BOPs as follows:

min
xu

{
F1(xu, xl), ..., FMu(xu, xl),
−(f1(xu, xl), ..., fMl(xu, xl))

}
s.t. xl ∈ argmin

xl

{
f1(xu, xl), ..., fMl(xu, xl)

gj(xu, xl) ≤ 0, j = 1, 2, . . . , J}

}
Gk(xu, xl) ≤ 0, k = 1, 2, . . . ,K

(4)

where the upper level objective functions are Fi(xu, xl), i =
1, 2, . . . ,Mu and the lower level objective functions are fi(xu, xl),
i = 1, 2, . . . ,Ml where xu ∈ Xu and xl ∈ Xl. Gk(xu, xl) and
gj(xu, xl) represent upper and lower level constraints respectively.
j and k values represent the number of constraints at the upper and
lower level. The pessimistic upper level objective in Equation 4 is
equal to Equation 3 when Mu and Mu are both equal to 1.

3.2 Proposed Method

In this section, we explain the proposed algorithm for pessimistic
BOPs. First, we give brief information about the algorithm, then we
explain with the details.

The proposed algorithm is a hybrid method to solve pessimistic
BOPs. Briefly, it works as follows. A size of Nu initial decisions, xu,
is randomly selected from upper-level search space. We used Sobol
sampling for the initial random selection. For each upper-level de-
cision, the lower-level problem is optimized using a sequential least
squared programming (SLSQP) algorithm [20]. The solution set ob-
tained after lower-level optimization (xu,x

∗
l ) is used to find upper-

level fitnesses Fi(xu,x
∗
l ) for i = 1, 2, . . . ,Mu and lower level fit-

nesses fi(xu,x
∗
l ) for i = 1, 2, . . . ,Ml. We train the GP model with

the data set (xu, yi) where yi = {Fi(xu,x
∗
l ),−fi(xu,x

∗
l )}. We

use Bayesian Optimization to choose the next candidate with qE-
HVI acquisition function. The lower-level optimization process is re-
peated for each pessimistic upper level decision xu. It is important
to note that dealing with constraints is the most challenging aspect
of BOPs. To avoid upper-level constraint violation, we made the ran-
dom selection from upper level Pareto-front considering the lower
level constraints. The algorithm runs for 50 iterations for the whole
multi-objective bilevel optimization process.

We assume that we have the pessimistic upper level
multi-objective problem with opposite direction lower
level objective. We use GP to model the objective func-
tions F = {F1(xu,xl), ..., FMu(xu,xl)} and f =

Algorithm 1 PROPOSED ALGORITHM

Inputs: Fu(xu,xl) : xu ∈ Xu,xl ∈ Xl,
Number of iteration n,
Reference point

1: Initial decision set D = {xui ,F(xui ,x
∗
li
, ),−f(xui ,x

∗
li
}ni=1

with size of n ,
2: x∗

l : Initialize Best Lower-Level Decisions as parameters from
SLSQP Algorithm,

3: Initialize Multi-objective Gaussian Model with Observations
{xu,F(xu,x

∗
l ),−f(xui ,x

∗
li
}

4: for i = 0 : N do
5: Suggest new points by optimizing q-EHVI acquisition func-

tion
6: for j = 0 : q do
7: For each upper-level decision xu, find optimal x∗

l by apply-
ing SLSQP Algorithm

8: Calculate fitness scores F∗
u and f∗u

9: end for
10: Update the data set D = (xui ,F(xui ,x

∗
li
), f(xui ,x

∗
li
))n

i=1
11: end for
12: Return Optimum decisions x∗

u,x
∗
l and corresponding objective

values, F (x∗
u,x

∗
l ) and f(x∗

u,x
∗
l ).

{f1(xu,xl), ..., fMl(xu,xl)} where Mu and Ml is the num-
ber of upper-level objective, respectively. Let us assume that
we have the observed upper-level and lower-level decisions and
upper-level objective values, then the observation data is as follows:

D =


(xu1 ,xl1 ,F(xu1 ,xl1),−f(xu1 ,xl1)),

. . . ,
(xun ,xln ,F(xun ,xln),−f(xun ,xln))

 (5)

where n is the number of observations. The GP model is constructed
with mean function and predictive variance function is defined by:

µ(x; {xun ,xln ,F(xun ,xln),−f(xun ,xln)}, θ)
σ(x; {xun ,xln ,F(xun ,xln),−f(xun ,xln)}, θ)

(6)

where θ is the model parameters. An acquisition function for
multi-objective optimization is Expected Hypervolume Improve-
ment. Maximizing hypervolume (HV) is a procedure for finding
the maximum coverage with Pareto fronts [35]. We use the q-
expected hypervolume improvement acquisition function (qEHVI)
for a MOBO procedure at the upper-level. qEHVI computes the ex-
act gradient of the Monte-Carlo estimator using auto-differentiation,
allowing it to employ efficient and effective gradient-based opti-
mization methods. More details about the qEHVI can be found in
[11]. The acquisition function selects the next upper-level decision
by x∗

u = argmaxx∈X α(x). Then we evaluate the lower-level op-
timization and, after finding the optimum lower-level decision x∗

l

regarding the upper-level decision, we update the data set with new
observations D ←− D∪(x∗

u,x
∗
l ,F(x

∗
u,x

∗
l ),−f(x∗

u,x
∗
l )). We reiter-

ate this procedure until the termination criteria are met. It is good to
note that in the GP, µ(·) can be viewed as the prediction of the func-
tion value and σ(·) is a measure of the uncertainty of the prediction.
The details of the algorithm can be found in Algorithm 1.

4 Experiments and Preliminary Results
In this section, we provide the preliminary results of the test problem
to illustrate the performance of the algorithm to reach the pessimistic



Table 1. Optimal Results for the Test Problem

Solutions xu xl F (xu, xl)

Optimistic 0.2106 1.799 -1.755
Pessimistic 0 0.2929 -0.2929

solution to the problem. The test problem is taken from [33] and
called mb_1_1_17 in the literature. We reformulate the problem and
defined the pessimistic formulation as follows:

Minimize
xu

F (xu, xl) =

{
(xu)

2 − xl,

−
(
(xl − 1− xu

10
)2 − xu

2
− 1

2

)2}
s.t. xl ∈ argmin

xl

{
f(xu, xl) =

(
(xl − 1− xu

10
)2 − xu

2
− 1

2

)2}
,

0 ≤ xu ≤ 1, 0 ≤ xl ≤ 3.
(7)

Table 1 shares the global optima for optimistic and pessimistic for-
mulations. The problem has multiple global optima at the lower level,
so solving the lower level optimization problem is crucial for both
upper and lower level objective values. We applied the Algorithm
1 to the test problem that reformulated in Equation 7. The experi-
ments run on a a single core of 1.4 GHz Quad Core i5, 8Gb 2133
Mhz LPDDR3 RAM. The algorithm is executed 30 times for the test
function and the results are shown in Table 2.

Table 2. The Results Obtained by the Proposed Algorithm after 30 Run

Pessimistic Results

Run xu xl F (xu, xl) Runtime (s)

1 0.0 0.295984 -0.295984 11.568
2 0.0 0.284260 -0.284260 12.394
3 0.0 0.302214 -0.302214 12.167
4 0.0 0.293317 -0.293317 8.988
5 0.0 0.291576 -0.291576 7.567
6 0.0 0.299777 -0.299777 8.752
7 0.0 0.283305 -0.283305 9.533
8 0.0 0.306050 -0.306050 4.694
9 0.0 0.290590 -0.290590 6.444

10 0.0 0.291880 -0.291880 11.532
11 0.0 0.298138 -0.298138 12.341
12 0.0 0.295053 -0.295053 7.966
13 0.0 0.287621 -0.287621 7.497
14 0.0 0.290137 -0.290137 6.396
15 0.0 0.285583 -0.285583 7.963
16 0.0 0.298160 -0.298160 10.752
17 0.0 0.291455 -0.291455 6.269
18 0.0 0.300341 -0.300341 10.180
19 0.0 0.290959 -0.290959 10.129
20 0.0 0.306742 -0.306742 10.095
21 0.0 0.290348 -0.290348 8.422
22 0.0 0.288043 -0.288043 8.974
23 0.0 0.280132 -0.280132 14.473
24 0.0 0.300028 -0.300028 8.651
25 0.0 0.287369 -0.287369 11.703
26 0.0 0.290636 -0.290636 8.040
27 0.0 0.298473 -0.298473 6.208
28 0.0 0.288104 -0.288104 10.138
29 0.0 0.291824 -0.291824 10.549
30 0.0 0.295658 -0.295658 5.953

Min 0.0 0.280132 -0.306742 4.694

Median 0.0 0.293125 -0.293125 9.211

Max 0.0 0.306742 -0.280132 14.473

We can see the pessimistic upper level decision and lower level
response for each run in Table 2. Also, we report the min, max and

median results for each run including runtimes. We can see that the
solutions found by the proposed algorithm after pessimistic reformu-
lation reached the optimal solution with an accuracy of 0.0002. The
runtime is approximately 9 seconds per run. Recently, [4] proposed
an evolutionary approach and compared its performance with state-
of-the-art algorithms, and they present the approach is successful.
We compared our results with them and discussed the brief results.
Compared with the fully evolutionary approach in [4], the proposed
algorithm runs almost 4.4 times faster with 100 times better accu-
racy for the pessimistic reformulation. It is shown that the proposed
algorithm with the pessimistic reformulation approximates well the
global optima while managing well to overcome the multiple local
optima of the lower level problem.

5 Limitations
The proposed hybrid approach uses the Bayesian optimization at
the upper level to approximate Pareto-optima. The Bayesian opti-
mization and Gaussian surrogate model is not very successful when
the problem is high-dimensional, and it appears as a limitation of
the proposed approach. There are few studies that focus on high-
dimensional Bayesian optimization recently [18]. Also, the new for-
mulation of the proposed approach is reshaping the single-objective
problems to multi-objective, which is harder to optimize compared
with single-objective problems. Many algorithms do not guarantee
the optima at the Pareto-optimal solution set. That comes with a chal-
lenge in candidate selection for upper-level decisions on pessimistic
problems.

6 Conclusions and Future Work
In this short paper, we propose a new formulation for pessimistic
bilevel optimization problems and a hybrid algorithm containing a
black-box approach at the upper level. Then we gave both general
optimistic and pessimistic formulations. After that, we explained the
motivation behind the proposed formulation and the algorithm. The
proposed algorithm contains a Bayesian optimization approach to the
pessimistic upper level problem. The Gaussian process-based surro-
gate model uses both upper and lower level objectives, and then we
solved the lower level problem with an exact algorithm. The exper-
iments show that the proposed algorithm with the reformulation ap-
proximates well to the known global optima for the test benchmark
problem.

It is well known that bilevel optimization with both single- and
multi-objective problems is widely used for decision-making sys-
tems [26]. The approaches developed and presented in this paper
can be applied to several practical problems with pessimistic for-
mulation, such as negotiations [36] in diplomacy or optimizing the
tax policy of authority while optimizing the specific objectives of a
mining company. Another interesting application to work on is the
defence industry in terms of attacker-defender Stackelberg games.
For instance, the positioning of the missile interceptors to counter
an attack threat or interdicting nuclear weapons are some of them.
The black-box approach at the upper level as presented in this paper
is not dependent on the specifications of the problems. In this way,
the simulation-optimization approach [29] can be applied to multiple
problems.
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