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Abstract. It is becoming increasingly important to develop trust-
worthy computer systems. Especially, the ethics of artificial intelli-
gence (AI) is attracting much attention, which requires various ethi-
cal issues to be considered in the development of AI-based systems.
To tackle this problem, Taheri et al. proposed a framework for ethi-
cal decision making, which Hosobe and Satoh further integrated with
Borning et al.’s constraint hierarchy framework to enable the power-
ful constraint-based modeling of problems for making decisions by
using ethical norms. In this paper, we propose a method for solv-
ing constraint hierarchies with ethical norm constraints by adopting
Hosobe and Satoh’s framework. To our knowledge, this is the first
proposed and implemented algorithm for actually solving constraint
hierarchies based on this framework. Our method is hybrid in the
sense that it combines a dedicated optimization algorithm with an
external constraint solver. While the external solver satisfies ordinary
hard constraints, the optimization algorithm treats soft ethical norm
constraints. We also present the implementation of our method and
the results of the experiment that we conducted to evaluate it.

1 Introduction
It is becoming increasingly important to develop trustworthy com-
puter systems. Especially, the ethics of artificial intelligence (AI) is
attracting much attention. This requires various ethical issues to be
considered in the development of AI-based systems including, for
example, privacy, manipulation of behavior, opacity of systems, and
bias in decision making [16].

To tackle this problem, Taheri et al. [19] proposed a framework for
ethical decision making. To declaratively treat ethical norms such as
privacy and fairness, it formalized several important aspects of eth-
ical decision making. The aspects include how to organize ethical
norms, how to evaluate choices according to such norms, how to ag-
gregate such evaluations for classes of norms, and how to decide the
best choices for the entire norms.

Hosobe and Satoh [13] integrated Taheri et al.’s framework with
Borning et al.’s constraint hierarchy framework [4] to enable the
powerful constraint-based modeling of problems for making deci-
sions by using ethical norms. Its main advantage is that ethical norms
can be represented as soft constraints and can be combined with other
kinds of hard constraints to model problems. Since ethical norms can
be regarded as criteria that may conflict, this framework can be re-
garded also as a framework for multi-criteria ethical reasoning. How-
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ever, their work still remained the proposal of the framework that
lacked any mechanism of automated constraint solving.

In this paper, we propose a method for solving constraint hierar-
chies with ethical norm constraints by adopting Hosobe and Satoh’s
framework. To our knowledge, this is the first proposed and imple-
mented algorithm for actually solving constraint hierarchies based
on this framework. Although researchers have proposed various al-
gorithms for solving constraint hierarchies, the previous ones were
based on Borning et al.’s standard constraint hierarchy framework.
Since Hosobe and Satoh’s framework introduced a new kind of soft
constraints for treating ethical norms, the previous algorithms are not
applicable to this framework. To treat such soft constraints, we de-
sign our method in a hybrid manner in the sense that it combines a
dedicated optimization algorithm with an external constraint solver.
While the external solver satisfies hard constraints, the optimization
algorithm treats soft ethical norm constraints. We also present the
implementation of our method and the results of the experiment that
we conducted to evaluate it.

The rest of this paper is organized as follows. Section 2 describes
related work, Section 3 presents preliminaries, and Section 4 gives
an example problem. Then Section 5 proposes our method, Section 6
describes its implementation, and Section 7 presents the results of
the experiment. After Section 8 discusses the proposed method, Sec-
tion 9 describes conclusions and future work.

2 Related Work

Borning et al. [4] proposed constraint hierarchies as a framework for
modeling and solving over-constrained problems. In a constraint hi-
erarchy, constraints are associated with preferences called strengths,
and solutions are determined by maximally satisfying stronger con-
straints. Constraint hierarchies have been used especially for interac-
tive graphical applications. For this purpose, researchers have devel-
oped many solvers of several kinds of constraints such as dataflow
constraints [6, 20], linear arithmetic constraints [1, 10, 14], and non-
linear constraints [11].

There have been only a few solvers of constraint hierarchies over
finite domains. Bistarelli et al. [3] proposed consistency techniques
for the reduction of constraint hierarchies over finite domains as well
as a branch-and-bound search algorithm for solving the reduced con-
straint hierarchies. Hosobe and Satoh [12] proposed binary search-
based methods for solving constraint hierarchies over finite domains
by encoding them into ordinary constraint satisfaction problems and



solving them with an external constraint solver.
Fungwacharakorn et al. [7, 8] recently proposed the use of con-

straint hierarchies for reasoning with legal and ethical norms. In par-
ticular, they studied the effects of fundamental revisions on constraint
hierarchies [7] and the connections of constraint hierarchies with
case-based representation of norms [8]. However, their studies were
focused on constraints represented as propositional logical formulas.

3 Preliminaries
In this section, we explain three frameworks as preliminaries to our
proposed method.

3.1 Ethical Decision Making

First, we briefly explain Taheri et al.’s ethical decision making frame-
work [9, 19]. It treats ethical norms such as data minimality, data
sensitivity, gender fairness, racial fairness, and system performance.
It organizes such norms into multiple norm classes that can be hierar-
chically structured. For example, data minimality and data sensitivity
can be classified in a norm class called privacy. There may be other
norm classes such as fairness and performance. Each norm is used
to rank alternatives (or choices to be compared in decision making).
A norm class aggregates the results of the rankings of the norms in
the class by using a voting mechanism. The framework especially
chooses Copeland’s rule [18] for this purpose. The framework se-
lects the best alternatives by using a relation called superiority for
comparing alternatives according to norm classes with a given par-
tial order.

3.2 Constraint Hierarchies

Next, we explain Borning et al.’s constraint hierarchy framework [4].
Let X be a set of variables. How to assign values to variables is ex-
pressed as a valuation that is a function from variables to their values.
Let Θ be the set of all the valuations. Then a valuation θ ∈ Θ obtains
the value of a variable x ∈ X as θ(x). Let C be a set of constraints.
How much a constraint is satisfied by a valuation is given by an error
function e. Specifically, e(c, θ) returns a non-negative real number:
returning 0 means that c is exactly satisfied by θ; returning a larger
number means that c is less satisfied.

A constraint hierarchy is typically represented as H =
⟨H0, H1, . . . , Hl⟩, where l is some positive integer, and each Hi,
called a level, is a set of constraints with strength i (that indicates
their preference). Level H0 consists of required (or hard) constraints
that must be exactly satisfied while each Hi with i ≥ 1 consists of
preferential (or soft) constraints that can be relaxed if necessary. A
typical constraint hierarchy is totally ordered, which means that a
preferential level Hi with smaller i consists of more important con-
straints.

A partially ordered hierarchy, another type of constraint hierar-
chies, is represented as ⟨H,<H⟩, where H = ⟨H0, H1, . . . , Hl⟩,
and <H is a partial order on {0, 1, . . . , l} with 0 as the only smallest
element. The intuitive meaning of the required level H0 is the same
as in the case of totally ordered hierarchies. By contrast, the impor-
tance of the preferential levels is specified by partial order <H ; that
is, if i <H j, Hi has more important constraints than Hj . To define
solutions to a partially ordered hierarchy, the notion of consistent to-
tally ordered hierarchies is used. Given a partially ordered hierarchy
⟨H,<H⟩, ⟨H,<′

H⟩ is a consistent totally ordered hierarchy if <′
H

is a total order on {0, 1, . . . , l} with 0 as the smallest element and

there is a bijective mapping m of type {0, 1, . . . , l} → {0, 1, . . . , l}
such that i <H j → m(i) <′

H m(j). Intuitively, a consistent totally
ordered hierarchy is a modification of a partially ordered hierarchy
that rearranges preferential levels in a total order in such a way that
any pair of ordered levels in the original partially ordered hierarchy
will keep the same order in the resulting totally ordered hierarchy.

The importance of constraints in a constraint hierarchy is treated
by a comparator better. Intuitively, better(θ, θ′, S0, ⟨H,<′

H⟩)
judges whether a valuation θ is better than another θ′ with respect
to alternative valuations S0 according to a totally ordered hierar-
chy ⟨H,<′

H⟩ that is consistent with a partially ordered hierarchy
⟨H,<H⟩. It should be noted that the better comparator internally
uses the error function e to evaluate individual constraints.

The solution set of a partially ordered hierarchy is defined as the
union of the solution sets of all the totally ordered constraint hierar-
chies consistent with the original partially ordered hierarchy.

Definition 1 (solution). Given a partially ordered hierarchy
⟨H,<H⟩, the set Spo(⟨H,<H⟩) of all the solutions to ⟨H,<H⟩ is
defined as

Spo(⟨H,<H⟩) =
⋃

⟨H,<′
H

⟩∈H

Sto(⟨H,<′
H⟩)

where H is the set of all the totally ordered hierarchies consistent
with ⟨H,<H⟩ and

Sto(⟨H,<′
H⟩) ={θ ∈ S0 | ∀θ′ ∈ S0

(¬ better(θ′, θ, S0, ⟨H,<′
H⟩))}

where
S0 = {θ ∈ Θ | ∀c ∈ H0(e(c, θ) = 0)}.

3.3 Constraint Hierarchies with Ethical Norm
Constraints

Finally, we explain Hosobe and Satoh’s extended constraint hierar-
chy framework [13], which was constructed by integrating Taheri
et al.’s framework [9, 19] with Borning et al.’s framework [4]. A
norm constraint evaluates a given valuation according to the asso-
ciated ethical norm and assigns a rank to the valuation. Let Cnorm

be a set of norm constraints. Then the meaning of norm constraints
is defined with a ranking function r. Intuitively, r(c, θ) obtains the
rank of a valuation θ according to a norm constraint c. Ranks are ex-
pressed with positive integers, and a smaller positive integer indicates
a better rank, typically with 1 as the best. This is formally defined as
follows.

Definition 2 (ranking function). Let Z+ be the set of all the positive
integers. A ranking function r is a function of type Cnorm×Θ→ Z+.

The framework defines a constraint hierarchy as a partially ordered
hierarchy ⟨H,<H⟩ with H = ⟨H0, H1, . . . , Hl⟩ and a partial order
<H with 0 as the only smallest element. It assumes that the required
level H0 consists of only ordinary constraints and that the other levels
H1, . . . , Hl, called the norm levels, consist of only norm constraints.

To evaluate how much a valuation satisfies a norm level, it uses a
combining function g that computes the Copeland score of the val-
uation according to the norm level. As already mentioned in Sub-
section 3.1, Copeland’s rule [18] was used by Taheri et al.’s ethical
decision making framework. Since Copeland’s rule gives a voting
mechanism that allows multiple voters to cooperatively determine
the best choices by computing Copeland scores, it is well suited also



to this framework in evaluating multiple ethical norm constraints at a
norm level. Intuitively, g(θ, S0, Hi) computes the Copeland score of
a valuation θ with respective to alternative valuations S0 according
to a norm level Hi. This is defined as follows.

Definition 3 (combining function). Given a valuation θ, a set S0 of
valuations with θ (i.e., θ ∈ S0), and a set Hi of norm constraints, the
combining function g is defined as

g(θ, S0, Hi) =
∑

θ′∈S0\{θ}

p(θ, θ′, Hi)

where

p(θ, θ′, Hi) =


1 if w(θ, θ′, Hi) > w(θ′, θ,Hi)

1/2 if w(θ, θ′, Hi) = w(θ′, θ,Hi)
0 otherwise

where

w(θ, θ′, Hi) =
∣∣{c ∈ Hi | r(c, θ) < r(c, θ′)}

∣∣ .
This definition is based on an adaptation of Copeland scores to

this framework. Function w(θ, θ′, Hi) uses the ranking function r
to compute the number of the wins of θ against θ′ according to the
norm constraints in Hi. Function p(θ, θ′, Hi) computes the elemen-
tal score of θ against θ′ according to Hi. Function g(θ, S0, Hi) ac-
cumulates the elemental scores to compute the Copeland score of θ
according to Hi

The framework defines a comparator better as follows.

Definition 4 (comparator). Given a constraint hierarchy ⟨H,<H⟩,
valuations θ and θ′, a set S0 of valuations with θ and θ′ (i.e., θ, θ′ ∈
S0), and a total order <′

H consistent with <H , the comparator better
is defined as

better(θ, θ′, S0, ⟨H,<′
H⟩) ≡

∃k ∈ {1, . . . , l}(∀i ∈ {1, . . . , l}
(i <′

H k → g(θ, S0, Hi) = g(θ′, S0, Hi)) ∧
g(θ, S0, Hk) > g(θ′, S0, Hk)).

The framework defines solutions to a constraint hierarchy
⟨H,<H⟩ as Spo(⟨H,<H⟩), which is formulated by Definition 1.

4 Example
In this section, we illustrate an example problem based on Hosobe
and Satoh’s constraint hierarchy framework [13], which was ex-
plained in Subsection 3.3. This example also was presented in [13],
and we use and extend it for our experiment in Section 7. This exam-
ple was adapted from Hayashi et al.’s use case of their multi-agent
real-time compliance mechanism [9]. The original use case consid-
ered a job recommendation service operated by an employment plat-
form company and performed legal and ethical reasoning. The com-
pany implements this service as a distributed system consisting of
multiple nodes, some of which are inside the European Union (EU)
and the others of which are outside. It wants to process its customers’
data by using a remote processing node. Although both its user node
and the remote processing node are inside the EU, some of the in-
termediate nodes between these nodes are outside the EU. Since the
data include the customers’ privacy information, it needs to treat the
data by following legal rules such as the EU’s General Data Protec-
tion Regulation (GDPR). In addition, it wants to treat the data by
respecting ethical norms such as privacy and fairness.

User node

Node 1

Node 2

Processing

node

Dataset 1

Dataset 2

Process 1

Process 2

EU

Non-EU

Figure 1. Problem of legal and ethical reasoning for a job recommendation
service adapted from Hayashi et al.’s use case of their compliance

mechanism [9].

This example problem is modeled as a constraint hierarchy by sim-
plifying this use case as illustrated in Figure 1. It consists of five vari-
ables d, u, n, m, and p, each of which ranges over a domain with two
values, and two required and six norm constraints associated with
ethical norms data_minimality, data_sensitivity, transfer_safety,
node_safety, algo_unbiasedness, and transfer_efficiency as fol-
lows:

required d = data2→ u = analysis (1)

required u = recommendation (2)

data_minimality (d = data1) ▷ (d = data2) (3)

data_sensitivity (d = data1) ▷ (d = data2) (4)

transfer_safety (n = node1 ∧m = node1) ▷

(n = node1 ∧m = node2) ◦
(n = node2 ∧m = node1) ▷

(n = node2 ∧m = node2) (5)

node_safety (n = node1 ∧m = node1) ▷

(n = node1 ∧m = node2) ◦
(n = node2 ∧m = node1) ▷

(n = node2 ∧m = node2) (6)

algo_unbiasedness (p = process1) ▷ (p = process2) (7)

transfer_efficiency (n = node2 ∧m = node2) ▷

(n = node1 ∧m = node2) ◦
(n = node2 ∧m = node1) ▷

(n = node1 ∧m = node1). (8)

The five variables have the following roles. First, variable d indi-
cates which of two datasets data1 and data2 should be used. Next,
variable u indicates for which of two purposes recommendation and
analysis they can use the datasets. In this use case, the dataset is
processed at a remote processing node. Variable n and m indicate
which of intermediate nodes node1 and node2 should be used when
the selected dataset is transferred to and returned from the remote
processing node respectively. Finally, variable p indicates which of
two processes process1 and process2 should be used at the remote
processing node.

The eight constraints have the following meanings. First, required
constraint (1) means that dataset data2 can be used only for purpose
analysis. Next, required constraint (2) means that the current situa-
tion needs to consider purpose recommendation. The other six are
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Figure 2. Structures of constraint hierarchies.

norm constraints. Each norm constraint is represented as a sequence
of more primitive constraints with either operator ▷ (meaning that the
next one is worse ranked) or ◦ (meaning that the next one is equally
ranked). Norm constraints (3) and (4) mean that, in the senses of
data_minimality and data_sensitivity respectively, using data1 is
better than using data2. Constraints (5) and (6) mean that, in the
senses of transfer_safety and node_safety respectively, using node1
twice is the best, using node2 only once is the second best, and us-
ing node2 twice is the worst. Constraint (7) means that, in the sense
of algo_unbiasedness, using process1 is better than using process2.
Constraint (8) means that, in the sense of transfer_efficiency, using
node2 twice is the best, using node1 only once is the second best,
and using node1 twice is the worst.

This example considers different structures of norm levels shown
in Figure 2. In the case of Figure 2(a), all the norm constraints
belong to one norm level. In the other cases, the four norm con-
straints (3), (4), (5), and (6) associated with norms data_minimality,
data_sensitivity, transfer_safety, and node_safety belong to the
same norm level privacy, and norm constraints (7) and (8) associ-
ated with algo_unbiasedness and transfer_efficiency belong to other
norm levels fairness and performance respectively. In addition, in
the case of Figure 2(b), all the levels are totally ordered, but in the
other cases of Figures 2(c), 2(d), 2(e), and 2(f), the levels are par-
tially ordered.1 It also considers further different subcases where the
norm levels are differently placed for the same structure of the partial
order.

This constraint hierarchy obtains solutions ⟨d, u, n,m, p⟩ as
⟨data1, recommendation, node1, node1, process1⟩, ⟨data1,
recommendation, node2, node2, process1⟩, or both, depending on

1 In this paper, we add the case corresponding to Figure 2(d), which was
missing in [13].

the given partial order of the norm levels. In Table 1 of Section 7, we
give the solutions computed by our implementation of the proposed
algorithm. For more details, see [13].

5 Proposed Method

In this paper, we propose a method for solving constraint hierarchies
with ethical norm constraints. Theoretically, our method is based on
Hosobe and Satoh’s constraint hierarchy framework [13]. Given a
constraint hierarchy on finite domains that consists of required (or
hard) constraints and preferential (or soft) ethical norm constraints,
it finds the set of all the solutions to the constraint hierarchy in the
sense of the underlying framework. The method is hybrid in the sense
that it combines a dedicated optimization algorithm with an exter-
nal constraint solver. While the external solver satisfies the required
constraints, the optimization algorithm treats the ethical norm con-
straints.

Our method internally performs two kinds of multi-objective op-
timization. First, inside each norm level, it treats multiple norm
constraints that may conflict. For this type of conflicts, it performs
multi-objective optimization by using a voting mechanism called the
Copeland’s rule [18], which it inherits from Taheri et al.’s frame-
work [19] and Hosobe and Satoh’s framework [13]. Second, it treats
multiple norm levels that also may conflict. For this type of conflicts,
it performs multi-objective optimization by using a partially ordered
hierarchy, which it inherits from Borning et al.’s framework [4] and
Hosobe and Satoh’s framework.

Algorithm 1 shows the entire process of the proposed method.
Initially, it takes a partially ordered hierarchy ⟨H,<H⟩ as an in-
put. At line 2, it solves the required constraints H0 by calling the
external constraint solver and obtains the result Θ0, which corre-
sponds to S0 in the underlying framework. Next, at lines 3 to 7, it
processes each potential solution θ ∈ Θ0 by computing the tuple
g = ⟨g(θ,Θ0, H1), . . . , g(θ,Θ0, Hl)⟩ of all the combining func-
tions based on Definition 3, and obtains the set G of all the pairs
⟨θ, g⟩. Next, at line 8, it obtains the set T of all the total orders <′

H

consistent with <H in the same way as Boring et al.’s original frame-
work. Next, at lines 9 to 22, it performs further optimization by treat-
ing the ethical norm constraints to find the best solutions from Θ0.
More specifically, for each total order <′

H ∈ T , it obtains the best
solutions Θ∗ in the sense of <′

H and merges them with Θ. To find the
best solutions Θ∗, it enumerates all the potential solutions θ to grad-
ually update the tentatively best combining function results g∗. For
this purpose, it uses a special function greater(g, g∗, <′

H), which
compares the currently treated combining function results g with the
tentatively best results g∗ in the sense of <′

H , which corresponds to
the comparator better in Definition 4. Finally, at line 23, it returns Θ,
which corresponds to Spo(⟨H,<H⟩) in the underlying framework.

Computing the set of all the total orders consistent with
a given partially ordered constraint hierarchy ⟨H,<H⟩ in
getConsistentTotalOrders at line 8 of Algorithm 1 is done as fol-
lows. First, all the permutations m(1),m(2), . . . ,m(l) of 1, 2, . . . , l
for the number l of the norm levels are generated. Next, for each
permutation, it is checked whether the permutation is consistent with
<H (based on the definition presented in Subsection 3.2). Finally, the
set of all the consistent permutations is returned. It should be noted
that a simple implementation of generating permutations is sufficient
because l is usually small (e.g., l = 1 or l = 3 in the constraint
hierarchies shown in Figure 2). However, in the case of many norm
levels, a more sophisticated algorithm would be needed.



Algorithm 1: Method for solving a partially ordered con-
straint hierarchy with ethical norm constraints.
Data: A partially ordered constraint hierarchy ⟨H,<H⟩
Result: The set Θ of all the solutions to ⟨H,<H⟩

1 begin
2 Θ0 ← solveRequiredConstraints(H0);
3 G← ∅;
4 foreach θ ∈ Θ0 do
5 g ← ⟨g(θ,Θ0, H1), . . . , g(θ,Θ0, Hl)⟩;
6 G← G ∪ {⟨θ, g⟩};
7 end
8 T ← getConsistentTotalOrders(<H);
9 Θ← ∅;

10 foreach <′
H ∈ T do

11 g∗ ← ⟨0, . . . , 0⟩;
12 Θ∗ ← ∅;
13 foreach ⟨θ, g⟩ ∈ G do
14 if greater(g, g∗, <′

H) then
15 g∗ ← g;
16 Θ∗ ← {θ};
17 else if g = g∗ then
18 Θ∗ ← Θ∗ ∪ {θ};
19 end
20 end
21 Θ← Θ ∪Θ∗;
22 end
23 return Θ;
24 end

6 Implementation
We developed a constraint solver in Scala Native by implementing
the algorithm proposed in the previous section. It adopts a solver of
satisfiability modulo theory (SMT) [15] called Z3 [5] as the exter-
nal constraint solver for solving required constraints (to implement
solveRequiredConstraints in Algorithm 1). However, it should be
noted that it could replace the external solver with another standard
one from the field of constraint programming [17] or satisfiability
(SAT) [2] since it performs only finite-domain constraint solving for
this purpose. The solver represents ethical norm constraints as simple
functions written in Scala Native that correspond to ranking functions
in Definition 2.

7 Experiment
This section reports the experiment that we conducted to evaluate the
method proposed in Section 5.

7.1 Problem Setting

In our experiment, we used the constraint hierarchy shown in
Section 4. In addition, we extended this basic form of the con-
straint hierarchy by introducing more variables and larger-arity con-
straints. Specifically, we increased variables n and m by k times
to n1, n2, . . . , nk and m1,m2, . . . ,mk respectively. Also, we ex-
tended the arities of norm constraints (5), (6), and (8) by making them
to refer to n1, n2, . . . , nk and m1,m2, . . . ,mk. Specifically, the
ranking function of norm constraints (5) and (6) was defined to return
one plus the number of the assignments of node2 to n1, n2, . . . , nk

and m1,m2, . . . ,mk, and the ranking function of norm constraint

(8) was defined similarly but using the assignments of node1 instead.
For example, in the case of k = 2, norm constraint (5) is changed to
the following:

transfer_safety (n1 = node1 ∧ n2 = node1 ∧
m1 = node1 ∧m2 = node1) ▷

(n1 = node1 ∧ n2 = node1 ∧
m1 = node1 ∧m2 = node2) ◦
(n1 = node1 ∧ n2 = node1 ∧
m1 = node2 ∧m2 = node1) ◦
· · · ▷
(n1 = node2 ∧ n2 = node2 ∧
m1 = node2 ∧m2 = node2).

It should also be noted that the basic form of the constraint hierar-
chy corresponds to the case of k = 1. Hereafter, we refer to k as
the size of the constraint hierarchy. A constraint hierarchy of size
k consists of 2k + 3 variables and two required constraints (1) and
(2), three norm constraints (3), (4), and (7), and three versions of
norm constraints (5), (6), and (8) extended to treat n1, n2, . . . , nk

and m1,m2, . . . ,mk.

7.2 Results

We solved the constraint hierarchies shown in the previous subsec-
tion by executing our constraint solver on an Apple M3 proces-
sor with 8 GB of memory using macOS 14.6.1, Scala Native 0.5.5,
Clang 15.0.0, and Z3 4.13.0. In the following and Table 1, we denote
privacy, fairness, and performance as pv, fr, and pf respectively,
and data1, data2, recommendation, node1, node2, process1, and
process2 as d1, d2, rec, n1, n2, p1, and p2 respectively for brevity.

Table 1 shows all the results. Column “Structure” corresponds to
structures (a) to (f) shown in Figure 2. Column “Hierarchy” indicates
how the norm levels were placed based on the structure. Especially,
the first row of each structure corresponds to the placement of the
norm levels shown in Figure 2. The notation pv <H {fr, pf} for
instance means that both pv <H fr and pv <H pf hold but the order
does not hold between fr and pf. Column “Computed solutions for
k = 1” indicates what solutions were computed by the solver for the
constraint hierarchy of size k = 1. We confirmed that the solutions
were the same as the ones shown in [13] (except for structure (d),
which was missing). Finally, columns “Mean times (ms)” indicate
the means of the execution times in milliseconds needed to solve the
same hierarchy ten times in each case. Overall, the solver required
almost the same length of time to solve a single constraint hierarchy
of each size regardless of its structure.

8 Discussion
The proposed method uses only a simple algorithm for finding the
best solutions from the potential ones obtained by enumerating all so-
lutions to required constraints. Because of this limitation, our solver
is currently not efficient. In fact, we observed that, in the case of large
problems, most of the execution time was spent on the computation
of the Copeland scores of the potential solutions according to ethical
norm constraints (at lines 3 to 7 in Algorithm 1). Especially, this inef-
ficiency was caused by the brute-force nature of comparison among
potential solutions. To solve this limitation, we need to incorporate
a more sophisticated algorithm such as dynamic programming and
branch-and-bound search.



Table 1. Results of solving different structures and sizes of constraint hierarchies with ethical norm constraints.

Mean times (ms)
Structure Hierarchy Computed solutions for k = 1 k = 1 k = 2 k = 3 k = 4 k = 5

(a) pv ∪ fr ∪ pf ⟨d1, rec, n1, n1, p1⟩ 7.0 13.1 59.7 968.1 24160.9
(b) pv <H fr <H pf ⟨d1, rec, n1, n1, p1⟩ 7.0 13.2 62.8 983.5 26228.3

pv <H pf <H fr ⟨d1, rec, n1, n1, p1⟩ 7.0 12.3 61.8 983.1 26746.5
fr <H pv <H pf ⟨d1, rec, n1, n1, p1⟩ 7.1 11.9 62.4 985.9 26839.5
fr <H pf <H pv ⟨d1, rec, n2, n2, p1⟩ 7.3 12.4 61.5 989.9 26694.6
pf <H pv <H fr ⟨d1, rec, n2, n2, p1⟩ 7.1 12.9 61.3 983.0 26664.8
pf <H fr <H pv ⟨d1, rec, n2, n2, p1⟩ 7.1 12.3 61.9 983.9 26352.6

(c) pv <H {fr, pf} ⟨d1, rec, n1, n1, p1⟩ 7.1 13.2 60.7 982.1 26632.8
fr <H {pv, pf} ⟨d1, rec, n1, n1, p1⟩, ⟨d1, rec, n2, n2, p1⟩ 7.1 13.5 60.8 979.6 26712.2
pf <H {pv, fr} ⟨d1, rec, n2, n2, p1⟩ 7.1 12.9 61.3 982.4 26572.3

(d) {pv <H fr, pf} ⟨d1, rec, n1, n1, p1⟩, ⟨d1, rec, n2, n2, p1⟩ 7.4 13.1 61.2 986.0 26464.3
{pv <H pf, fr} ⟨d1, rec, n1, n1, p1⟩ 8.6 12.9 61.7 985.4 26501.3
{fr <H pv, pf} ⟨d1, rec, n1, n1, p1⟩, ⟨d1, rec, n2, n2, p1⟩ 8.0 12.1 60.9 983.5 26470.7
{fr <H pf, pv} ⟨d1, rec, n1, n1, p1⟩, ⟨d1, rec, n2, n2, p1⟩ 7.8 12.9 61.8 988.4 26558.1
{pf <H pv, fr} ⟨d1, rec, n2, n2, p1⟩ 9.1 12.4 61.8 979.5 26347.0
{pf <H fr, pv} ⟨d1, rec, n1, n1, p1⟩, ⟨d1, rec, n2, n2, p1⟩ 8.6 13.0 61.1 981.2 26533.2

(e) {pv, fr} <H pf ⟨d1, rec, n1, n1, p1⟩ 9.0 13.0 61.5 980.8 26676.1
{pv, pf} <H fr ⟨d1, rec, n1, n1, p1⟩, ⟨d1, rec, n2, n2, p1⟩ 8.9 13.2 61.6 983.4 26541.2
{fr, pf} <H pv ⟨d1, rec, n2, n2, p1⟩ 8.1 12.9 62.1 981.9 26435.8

(f) {pv, fr, pf} ⟨d1, rec, n1, n1, p1⟩, ⟨d1, rec, n2, n2, p1⟩ 8.4 12.2 61.5 983.1 26391.5

Although the proposed method uses an external solver to solve re-
quired constraints, the method does not use it to treat ethical norm
constraints. In [12], Hosobe and Satoh solved constraint hierarchies
by encoding soft constraints and satisfying them with an external
solver. However, we think that it is not straightforward to similarly
encode ethical norm constraints because of the complex formulation
of their combining functions in Definition 3. Therefore, further ex-
ploring this approach will need to construct an efficient way of en-
coding the combining functions of ethical norm constraints.

9 Conclusions and Future Work
In this paper, we proposed a method for solving constraint hierar-
chies with ethical norm constraints. To our knowledge, the method
is the first proposed and implemented algorithm for actually solving
constraint hierarchies based on Hosobe and Satoh’s framework [13].
We also presented its implementation and the results of the experi-
ment that we had conducted to evaluate our method.

Our future work includes improving of the performance of the
method by incorporating a more sophisticated search algorithm. An-
other direction is to construct a method for encoding ethical norm
constraints into ordinary constraint satisfaction problems or SAT
problems. We also need to perform a further experiment by using
larger and more complex problems. Furthermore, we will explore
practical applications of our constraint solver to show its effective-
ness in real-world problems.
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