
Pareto Front Approximation Results for
Bus Driver Scheduling with Complex Constraints

Nikolaus Frohnera,*, Esther Mugdana, Lucas Kletzandera and Nysret Musliua

aChristian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling
TU Wien, Vienna, Austria

Abstract. Bus driver scheduling deals with assigning drivers to ve-
hicles which satisfy customers’ transport needs on tours. Safety con-
cerns and labor laws dictate hard constraints like imposing a maxi-
mum driving time and taking required breaks. Bus operators seek for
efficient schedules in terms of costs which should also be accepted
by the drivers, for instance by avoiding duty parts cluttered over the
day with long breaks and too many tedious vehicle changes. Decision
makers want to learn about the trade-offs and the interaction of such
conflicting goals. To this end, we compare different multi-objective
optimization approaches to approximate the up to five-dimensional
Pareto frontiers (PFs) for two real-world bus driver scheduling vari-
ants with complex sets of hard and soft constraints. We observe that
a mutation-only NSGA-II already provides a solid baseline, while a
population-based simulated annealing variant is often superior under
short time limits when tuning it towards heavy restarting from the
current PF approximation.

1 Introduction

Automated planning approaches to bus driver scheduling (BDS) have
been studied over the last decades, see, e.g., Wren and Rousseau
[23] in 1995, Lourenço et al. [18] in 2001, and Kletzander and Mus-
liu [11] in 2020. It is still gaining attraction due to its plethora of
problem variants given varying labor laws over the world and its
relevance in the increasing demand of public transportation to pro-
mote the green transformation and sustainability goals. Furthermore,
finding personnel becomes increasingly difficult, making a trade-off
between a cost-efficient and ecological bus operation and providing
schedules well-received by employees even more challenging.

In this work, we study real-world Central European BDS variants
with complex break constraints and conflicting goals, which have
so far mainly been tackled by weighted-sum approaches. We investi-
gate classical solution archive based many-objective optimization ap-
proaches Pareto simulated annealing [2] and NSGA-II [4] to quickly
approximate up to five-dimensional Pareto frontiers. They allow us
to assess the trade-offs between the different objectives, qualitatively
and quantitatively. The approximated fronts may also serve as basis
for more sophisticated decision support systems, like the reference
point method R-XIMO by Misitano et al. [21] and a Shapley value
based weight setting approach by Mischek and Musliu [20].

We describe the considered problem variants in more detail in Sec-
tion 2 and discuss related multi-objective work for bus driver and

∗ Corresponding Author. Email: nikolaus.frohner@tuwien.ac.at

crew scheduling in Section 3. The adopted many-objective combina-
torial optimization approaches are described in Section 4. The main
contribution of this work is a detailed computational study in Sec-
tion 5, where we tune parameters on a training set and validate the
approaches on a test set of real-world inspired BDS instances and
one real-world instance, after which we conclude in Section 6. A key
finding is that a population-based simulated annealing (PSA) greatly
benefits from frequent restarting from the current non-dominated so-
lution set. This mechanism enables PSA tuned with irace [17] to
beat the solid mutation-only NSGA-II baseline algorithm in terms of
normalized hypervolume of non-dominating solution sets and mini-
mizing the distance to a manually tuned trade-off reference point on
the Pareto front on three to five-dimensional problem versions.

2 Problem Description
Bus Driver Scheduling (BDS) is a part of crew scheduling in the pro-
cess of operating bus transport systems [9]. It deals with the feasible
combination of pieces of work to duties abiding labor regulations.
The duties can then be repeated over a planning horizon and subse-
quently be assigned to concrete drivers also taking their preferences
into account. This is the Bus Rostering Problem (BRP), a separate
problem not considered in this work. The BDS has been tackled by
many authors as already reviewed by Wren and Rousseau [23] in
1995. Most of them focused on costs [9, Tab. 7], with Lourenço
et al. [18] and Kletzander and Musliu [11] being notable excep-
tions. We study the latter problem variant with complex break con-
straints (CBC) as explicit multi-objective optimization (MOO) prob-
lem based on Pareto dominance instead of using a weighted-sum ap-
proach, henceforth abbreviated MO-BDS-CBC. We now provide a
concise overview of the original problem, for a more detailed de-
scription see Kletzander and Musliu [11].

A problem instance consists of bus routes which are given as a set
L of individual bus legs. Each leg ℓ ∈ L is associated with a tour νℓ
corresponding to a particular vehicle, a start time tsℓ, an end time teℓ,
a starting position xs

ℓ, and an end position xe
ℓ. The driving time for

leg ℓ is dℓ = teℓ − tsℓ. A solution to a MO-BDS-CBC instance is an
assignment of exactly one (abstract) employee to each bus leg, i.e.,
a mapping A : L → E which induces the assignment of legs to em-
ployees A−1 : E → 2L. The legs are ordered by their starting times.
A possible solution to an example instance is shown in Figure 1.

A tour change occurs when a driver has an assignment of two con-
secutive bus legs i and j with νi ̸= νj . The time it takes to change
from position x to position y when not actively driving a bus (passive
ride time), is δx,y for x ̸= y. The diagonal elements δx,x represent

Figure 1. Ten partial example duties (E1–E10) for ten bus tours (1–10).
Numbered rectangles are the actively driven bus legs, brown are unpaid
breaks, violet are paid breaks, red is passive riding time to a relief point,

light red and green setup and postprocessing times.

the time it takes to switch tour at the same position, but is not consid-
ered passive ride time. Example duties E3 and E9 in Figure 1 each
contain one tour change. Each position x is further associated with
an amount of working time for starting a shift (dsx) and ending a shift
(dex) at that position.

Constraints are imposed on duties separately. The only im-
plicit overall constraint is that there is maximum number of duties
|E|. This permits to calculate hard and soft constraint violations
vh(A), vs(A) of an assigment A as sum of separate calculations of
constraint violations for employees (duties) e ∈ E. The problem has
the following set of hard constraintsH:

• Overlap (hover): No overlapping leg assignments and enough
changing time in case of a tour change.

• Max span (hspan): Hard maximum Omax = 14 hours for the total
span of a shift.

• Max work (hwork): Hard maximum Wmax = 10 hours for the
total paid working time per shift.

• Max drive (hdrive): Hard maximum Dmax = 9 hours for the total
driving time per shift.

• Driving breaks (hbreaks): Driving breaks after at most 4 hours of
driving time, with the options of one break of at least 30 minutes,
two breaks of at least 20 minutes each, or three breaks of at least
15 minutes each.

• Rest breaks (hrest): Rest breaks of at least 30 minutes are required
for shifts between 6 and 9 hours, and of at least 45 minutes for
shifts of more than 9 hours.

Furthermore, MO-BDS-CBC considers six different objectives as
sums over the duties. Given a schedule A, We(A) corresponds to
the paid working time for employee e and Te(A) to the duty’s span
(spreadover) including unpaid duty parts. The objectives are also
called soft constraints as they all should be minimized, S, with a
given maximum number of duties n = |E| as instance input:

• Working time (swork): The total amount of paid working time
vswork =

∑
e∈E We excluding additional paid working time used

to fill up shifts below Wmin = 6.5 hours.
• Minimum working time (smwork): The additional amount of paid

working time to fill up shifts below Wmin , obtained by vsmwork =∑
e∈E max{Wmin −We; 0}.

• Span (sspan): The sum of all spans vsspan =
∑

e∈E Oe.
• Passive ride (sride): The sum of passive ride times.
• Tour changes (schange): The total number of tour changes.
• Shift splits (ssplit): The total number of shift splits (breaks of at

least 3 hours which are always unpaid, but not rest breaks).

Hard constraint violations are explicitly considered. The goal is to
find “interesting” non-dominated (ideally Pareto-optimal) solutions

over (a subset of) the soft constraints, our vector-valued objective.
Feasible solutions always dominate infeasible ones, i.e., we have two
lexicographically ordered sets of objectives H and S. The vector-
valued violation tuple is therefore:

v(A) = (vh(A),vs(A)), (1)

where vh(A) amounts to the hard constraint and vs(A) to soft
constraint violations vector of schedule A. We seek to find the set
minA v(A) w.r.t. the described dominance relation.

3 Related Work
Lourenço et al. [18] in 2001 introduce a many-objective bus driver
scheduling (MO-BDS) problem variant with the objectives costs
(paid labor time), overcover of legs, number of duties (employees,
drivers), tour changes, and duties with single pieces of work. They
use a set cover formulation where a set of feasible duties (in the ten-
thousands) is already given as input corresponding to the columns
with which to cover the rows (legs/pieces of work, in the hundreds).
Efficient solutions are generated with sophisticated variants of tabu
search and genetic algorithms using a GRASP to solve set cover-
ing subproblems. They find a trade-off relation between overcover
and flexible but undesirable single-piece-of-work duties, the latter
is similar to our minimum working time penalizing short duties. In
contrast, we use a direct formulation where each bus leg (in the hun-
dreds/thousands) is assigned exactly once to a driver, a search space
of all possible duties (feasible or infeasible) without overcover where
hard constraints need to be considered explicitly.

Li and Kwan [16] propose a hybrid genetic algorithm to solve a bi-
objective BDS considering operational costs and number of duties.
They use a set cover formulation and apply multi-start greedy con-
struction where weights for the greedy criterion combining structural
aspects of a duty are learned using the aforementioned genetic algo-
rithm. We also use a normalized evaluation function, transforming
objectives into a hypercube defined by an ideal and a reference point.
The same objectives are tackled by De Leone et al. [3] who sug-
gest a three-index formulation for an Italian BDS problem with hard
regulatory constraints, where pieces-of-work are directly placed at a
specific position of a duty having a bounded set of duties. They com-
bine the costs and number of duties as two objectives in a weighted
sum and compare different (extreme) weight settings. They intro-
duce a parameterized randomized construction heuristic and different
neighborhood structures which they combine in a GRASP approach
to tackle the instances out of reach for their exact solving method. In
our problem variant, we observe that reducing the number of duties
generally supports reducing operational costs and vice versa.

The problem variant we study here was introduced by Kletzan-
der and Musliu [11] with the aforementioned six different objectives.
They are combined to a single weighted-sum objective function to
create desirable schedules performing manual weight tuning with
feedback from practitioners. To address the issue of setting weights,
Kletzander and Musliu [12] study an automated weight learning ap-
proach driven by goals in the objective space. The current state-
of-the-art approaches are based on a sophisticated branch-and-price
solver by Kletzander et al. [14], which is incorporated as repair op-
erator into an (adaptive) large neighborhood search by Mazzoli et al.
[19] to find new best feasible solutions for medium to large instances.

A generalization of driver scheduling is crew scheduling. Suitably
skilled people are assigned together to, probably longer, pieces-of-
work like it is the case for airline and railway travel. Ehrgott and
Ryan [6] study exact ε-constraint based methods for a bi-objective

Algorithm 1: Population-based algorithmic framework bor-
rowing terminology from evolutionary algorithms.

Input: Instance I , number of individuals N ind, time limit τ ,
algorithm-specific parameters θ

Result: Non-dominated solution set S
1 S ← {}, G ← init(N ind), evaluate(G);
2 pareto-update(S,G);
3 while elapsed time ≤ τ do
4 G′ ← select-parents(G);
5 mutate(G′), evaluate(G′);
6 pareto-update(S,G′);
7 G ← select-survivors(G,G′);
8 replenish(G,S); // if |G| < N ind

9 update-strategy-parameters(G);
10 end
11 return S

airline crew scheduling problem. They quantify the inverse rela-
tion between operational costs and a robustness measure—less ro-
bust schedules are more prone to propagation of delay due to flight
changes of crews with tight ground time windows. Considering ro-
bustness aspects related to traffic congestion issues might be interest-
ing future work for the BDS as well.

Jolai and Assadipour [10] present a concise study applying cellular
genetic algorithms to a MO crew scheduling problem with the objec-
tives costs, delay, and unbalanced utilization. Banerjee et al. [1] apply
an extended NSGA-II variant to an interval-valued crew scheduling
problem with uncertainties.

4 Optimization Approaches
Neighborhood search based metaheuristics like simulated annealing
(SA), tabu search (TS), and iterated local search (ILS) have proven
to work well on the BDS problem domain, see [11, 15]. Therefore,
we follow the pattern of a multi-trajectory local search framework
with an archive of currently non-dominated solutions. It is outlined
as pseudo-code in Table 1 with terminology borrowed from evolu-
tionary algorithms (EAs), within which both considered variants of
NSGA-II and population-based simulated annealing can be formu-
lated. The current generation of individuals are kept in the set G
together with algorithm-dependent strategy parameters and histori-
cal information. Every new solution sampled from a neighborhood
is checked for non-dominance and potentially goes into the solution
archive S, which is eventually returned.

Initialization. Having diversity in mind, we create an initial pop-
ulation of N ind solutions by repeated application of a randomized
greedy construction heuristic based on [11]. It iterates over all tasks
(bus legs) in ascending order by their start time and randomly assigns
a task to a driver whose duty can be feasibly extended. If no feasible
extension is possible, a new driver is added and assigned the task. If
the maximum number of drivers is hit, the task is then assigned over-
all randomly to an existing driver. The following legs of the same
tour are also added to the selected driver as long feasibly possible to
bias towards fewer tour changes. The population initialization is the
same for NSGA-II and PSA.

Pareto simulated annealing. We adopt a population-based sim-
ulated annealing, called Pareto simulated annealing proposed by
Czyzżak and Jaszkiewicz [2]. Multiple so-called generating solu-
tions (corresponding to EA’s individuals) A ∈ G traverse the so-

lution space by applying a random move (corresponding to a mu-
tation) operator every generation and collect non-dominated solu-
tions along their way. As neighborhood structure, we use a param-
eterized composite leg swap neighborhood [11]. Two different duties
are randomly selected and a random consecutive subsequence of legs
(block) of the first duty is moved to the second duty. The overlapping
legs of the second duty are then moved back to the first duty. The
quality of the duties are taken into account (e.g., swap from lower-
quality duties with higher likelihood) and the block length is also a
random variable. The underlying probability distributions are param-
eters and are discussed and tuned in the computational study.

The cooling schedule is global for all individuals. It starts with an
initial temperature T = T0 and cools down T every Nequi genera-
tions by multiplying with βc < 1. We reheat to the initial tempera-
ture T0 when reaching the final temperature Tfinal. A neighboring so-
lution x′ proposed by a move applied on x is accepted in four cases:
if it dominates the current solution, if it is a newly found (global)
non-dominated solution, if it is better according to its current search
direction, or probabilistically depending on the current temperature
T by the Metropolis criterion. Otherwise, the generating solution x
remains unchanged for the given generation.

To facilitate different search directions, the individuals carry sum-
to-1 weights wj(A) for all the objectives j ∈ 1, . . . , |S|, their strat-
egy parameters. This amounts to individual preferences, where some
objectives are more important than others. As the weights are differ-
ent for each individual and may also be updated during the search, a
broad range of preferences is covered.

An optional repulsion-of-nearest-neighbors mechanism [2] in the
objective space is employed based on weight updates to promote
exploration of the search space and avoid clustering. This is done
by comparing the objectives of an individual with its nearest non-
dominated neighbor A′′ (not to be confused with a neighbor from
the search neighborhood, denoted as x′) and multiplying the objec-
tives’ weights where the objective is better with α ≥ 1 and divide by
the same α for those which are worse:

wj(A)←

{
wj(A) · α if vsj (A) ≤ vsj (A

′′)

wj(A)/α otherwise
. (2)

We take the Euclidean distance in normalized objective space where
all objectives have similar scale. The weights are initialized randomly
∼ U [0, 1] and are kept above a threshold of 10−3 during normaliza-
tion s.t. they do not vanish [20].

To foster intensification, generating solutions that do not con-
tribute to the approximate Pareto front S for a while are restarted ran-
domly at a currently non-dominated solution, as suggested by Drexl
and Nikulin [5]. We use as tunable parameters θR a fixed threshold
of non-improving generations nre after which such a restart is per-
formed with probability pre and optionally reinitializing the individ-
ual’s weights randomly. Note that this restart is not the overall reheat
of PSA where the solutions remain unchanged but the global temper-
ature is set to its initial value, but a local restart of an individual by
copying a solution deemed more promising.

NSGA-II. As a competing baseline approach, we further study a
minimal NSGA-II [4, 22] variant with binary tournaments for par-
ent selection considering the non-dominance rank and crowding dis-
tance, and the same rules for survivor selection among parents and
offspring. As mutation operator we take the move operator from PSA
which swaps leg blocks between duties. A single mutation move is
applied on every parent, no crossover operation is performed. Solu-
tions are encoded as a list of duties sorted by increasing start time of

their first legs, where each duty itself is encoded as list of legs, again
ordered by increasing start time. More sophisticated approaches are
justified by beating this rather straightforward baseline.

Evaluation. As our objectives are of different scales and units,
we let the algorithms operate in a normalized objective space (the
“tilde”-space). To this end, we approximate the ideal points l by opti-
mizing each objective separately for a given problem instance, which
then corresponds to 0, the origin. Then, we let the decision maker
define a reference point at 1 by defining the worst acceptable values
u for the objectives. The transformation to normalized space is per-
formed by ṽsj = (vsj − lj)/(uj − lj), i.e., calculting the difference
between ideal and reference point to rescale the objective and tak-
ing the difference to its ideal. This rescaling is important for distance
calculations, the update rules using a weighted sum over the objec-
tives, and to compare performance indicators as the hypervolume [7]
which measures the objective space covered by a non-dominated so-
lution set relative to a reference point.

As we have many hard constraints that are difficult to fulfill, how
to treat infeasible solutions becomes a challenging question to an-
swer. For the baseline NSGA-II, we set infeasible solutions to this
reference point. For SA, we keep a separate weight for hard con-
straints violations as tunable parameter. Equation 3 shows the objec-
tive function used to calculate the acceptance probability for a child
related to a parent solution via the Metropolis criterion’s exponent
−|f̃(A′)− f̃(A)|/T , i.e., the log-probability to accept a worse solu-
tion A′ when currently at solution A. The weighted sum objective is
then defined as:

f̃(A;w) = M ·
|H|∑
i=1

vhi(A) +

|S|∑
j=1

wsj · ṽsj (A). (3)

(Hyper-)parameter tuning. There are quickly many different al-
gorithmic parameters θ involved, in machine learning referred to
as hyperparameters to avoid confusion with model parameters. For
PSA, we consider population size N ind, initial temperature T0,
quadratic cooling rate βc, equilibrium iterations Nequi, final tem-
perature Tfinal after which we reheat back to T0, hard weight M ,
restarting parameters θR, and neighborhood structure parameters
θN , which we will specify in detail in the computational study. For
our minimal NSGA-II, in the spirit of a baseline algorithm with few
tunable parameters, we only consider the population size N ind. We
first explore the parameter space manually with the goal to get first
ideas of the impact of and relations between parameters in prelimi-
nary experiments on a training data set. After that, we define a con-
figuration space, in which we let the iterative racing software irace
[17] do its work to efficiently make use of a given computational
budget of r runs. The tuned algorithms are then finally studied on
unseen test instances.

5 Computational Study

We now present the application of the described MOO approaches to
two BDS variants. Our computational testbed was a cluster running
Ubuntu 22.04.2 LTS with 2× Intel Xeon CPU E5-2650 v4 (2.2 GHz,
12 physical cores, no hyperthreading). The algorithms were imple-
mented in Python 3.9 and run with the fast PyPy interpreter.1 NSGA-
II was implemented with the Python toolbox DEAP by Fortin et al.
[8] using a solution decoding/encoding pattern. We mainly study the

1 https://www.pypy.org/

problem variant by Kletzander and Musliu [11] with publicly avail-
able test instances to be comparable with the literature.2 Furthermore,
we generated another batch of instances from the same distribution
to act as training set for exploratory experiments and parameter tun-
ing. They are made available under the same link, together with the
instance-wise maximum number of employees and objective ideals.
The reference point calculation is described in the next subsection,
using the maximum number of employees and instance-independent
constants as input. Ideals and reference points are in particular im-
portant to calculate the normalized hypervolumes, our main figure of
merit. We conclude the study by presenting results on a single in-
stance from a real-world problem variant to further provide evidence
for the approaches’ usefulness for decision makers.

5.1 Preparation

In the preparatory phase, we first analyze instance characteristics and
derive for each instance a maximum number of duties. Furthermore,
we calculate ideals and a reference point for each of the objectives.

Instance characteristics. Previous work [11] has shown that the
maximum number of employees (maximum duties) has a strong im-
pact on the solutions, in particular costs, as one would expect. As the
work to be performed remains the same, fewer employees necessar-
ily lead to more efficient use of the available labor force but finding
feasible solutions may become more complicated or even impossi-
ble. However, undesired patterns like shift splits, which can cover
two spread demand peaks by, e.g., joining a morning and afternoon
spell with a long unpaid break in between using only one employee
may then emerge or even become necessary. Reducing the maximum
number of employees can also be seen as a separate objective—we
take it as input parameter provided along with the problem instance.
Multiple runs with different numbers can then be performed to study
the impact of changing the maximum size of workforce. This leads
to the questions how to sensibly set this parameter for the given in-
stances, which we answer in the remainder of this subsection.

We mainly perform experiments with a set of 30 training instances
Itrain of the MO-BDS-CBC. A final validation is performed on an
equally-sized test set Itest and on a different problem variant for
which have a single real-world instance of a project partner. The in-
stance characteristics of the training instances are shown in Table 1.
The gross leg durations are defined as the end of a tour’s last leg
minus the start of its first leg plus 25 minutes setup/postprocessing
time summed over all tours in units of eight hours. This should give
a first coarse estimate of the number of employees required and pro-
vide some means to normalize objective values, e.g., how much work
time does a solution require in units of gross leg durations.

2 https://cdlab-artis.dbai.tuwien.ac.at/papers/sa-bds/

Table 1. Characteristics of training instance set Itrain with |V | the
number of tours, |L| number of legs/pieces of work, and d and d̂

corresponding net and gross durations of legs 8 hour blocks.

|V | |I| |L| d(L)8h d̂(L)8h |E| schange ssplit

8 5 76.8 7.0 9.7 12.8 5.4 2.6
17 5 168.2 14.5 20.4 25.6 11.0 3.2
29 5 255.4 23.2 31.7 42.2 20.6 6.8
39 5 355.8 30.5 43.1 55.0 32.4 11.8
50 5 457.8 39.5 55.5 71.6 39.0 13.0
58 5 542.6 47.5 66.0 84.8 47.4 14.8

Construction heuristics. To retrieve more information and a better
estimate regarding required employees in relation to desirable goals,
we make use of randomized construction heuristics as described in
the previous section. In Table 1, we add the maximum number of
employees required over ten randomized construction runs, averaged
for each instance group. We further take the corresponding solution
with the maximum number for each instance and calculate the aver-
age number of tour changes and shift splits per instance group. E.g.,
for the largest instance group every∼ 6th employee faces a split duty.

Ideals and reference points. In our approach, we require, apart
from the problem instance in form of the bus legs to be assigned
to drivers and distances between stations, further input: The maxi-
mum number of drivers available, an ideal point and a reference point
for normalization. To bootstrap the maximum number of drivers |E|,
we perform for each instance another 30 runs for each with the ran-
domized construction heuristic and take the maximum number over
the feasible solutions. We perform multiple simulated annealing runs
[11] with decreasing number of employees starting from the maxi-
mum enabling only one objective at a time to approximate the ideals
l (lower) for the objectives. With the reference point u (upper), we in-
troduce first preferences of the decision maker. It is calculated based
on the maximum number of employees and limits of what can be tol-
erated: 1.5 × |E| for the tour changes, 0.5 × |E| for shift splits, 2
hours per employee for ride time and minimum work time, 10 hours
work time and 12 hours span per employee. With this, we transform
the objectives vsi by (vsi − li)/(ui − li). A value close to 0 lies
close to the ideal, close to 1 close to the reference point. As a relative
performance measure for non-dominated solutions sets, the normal-
ized hypervolume [7] |H̃| is calculated in this transformed objective
space, for which a value closer to 1 is better. Further considered met-
rics are the size of the non-dominated solution set |S| and the min-
imum Euclidean distance to a reference point d̃min

ref calculated with
single-trajectory SA runs using the weighted-sum from [13].

5.2 Training and tuning

On the training set Itrain, we perform first exploratory experiments
to learn about the behavior of the algorithms and the relation between
different objectives. Furthermore, parameter tuning is performed,
meta-optimizing the hypervolume in a time-limited setting as one
main goal is to quickly find good Pareto front approximations.

Three-dimensional experiments. In preliminary tuning experi-
ments, we consider the three objectives minimum working time, ride
time and span. The motivation is that a reduced span aims for a more
efficient use of the available time, also avoiding long shift splits,
while too short duties are penalized by the minimum work time. Min-
imizing ride time acts also as a proxy for either fewer tour changes

Table 2. Training set: Comparison 3D (min-work, ride time, span)
normalized hypervolume |H̃|, minimum normalized distance to a PF

reference point dmin
ref for different numbers of individuals N ind.

|S| d̃min
ref |H̃|

config N ind mean mean std mean std median

NSGA-II 20 454 0.20 0.08 0.68 0.10 0.66
100 633 0.18 0.09 0.69 0.12 0.66

PSA-basic 20 2 435 0.24 0.15 0.64 0.19 0.57
100 2 873 0.22 0.13 0.66 0.17 0.60

PSA-restarting 20 2 278 0.15 0.10 0.72 0.15 0.68
100 2 403 0.14 0.10 0.74 0.14 0.70

PSA-tuned 172 2 270 0.13 0.09 0.74 0.13 0.72

or favors more efficient changes where drivers meet at the same or
close positions. As runtime limit, we use 15 minutes per unit of in-
stance size, i.e., 15 minutes for the smallest and 6×15 = 90 minutes
for the largest instances.

For PSA, we set the hard weight to a relatively high 1 to focus on
feasible moves, the initial and final temperature to 0.001 and 10−7

respectively, and cooling factor β = 0.99 with 10 equilibrium iter-
ations. For the swap neighborhood, two duties e1, e2 and a subse-
quence of legs in e1 need to be sampled. We consider two options,
biased and uniform sampling. For biased sampling, the duties are
sorted decreasing by their weight-dependent objective value. Then
an index is sampled from Beta[1, β]—increasing β favors sampling
of duties with higher objective value, which may benefit more from
a swap. If β = 1, the sampling is uniform. We start our experiments
with uniform sampling, also because our NSGA-II individuals do not
carry any weights. The automated tuning of PSA later may make use
of biased sampling. Based on practitioners experience with sampling
the leg subsequence, with 5% probability the first leg of a duty is
taken, otherwise a leg uniformly at random. Starting from this leg,
the length is sampled with 50% probability from U [2, b], otherwise
from U [2, |e1|]. The probability weight for multi interval swaps is set
to a high wms = 10 vs. weight 1 for single interval swaps.

Table 2 shows the performance of NSGA-II and different PSA
variants with different population sizes on the training set. To ini-
tialize a population, we make use of the randomized construction
heuristic from before, where seeding ensures that all algorithms start
with the same individuals. We observe a small improvement when
increasing the population size from 20 to 100, both in terms of being
closer to a Pareto-optimal reference point and normalized hypervol-
ume. NSGA-II performs slightly better than PSA-basic, while there
is a strong impact restarting from a random solution of the current ap-
proximate Pareto front after a number of non-contributing iterations
of a generating solutions. For this restarting variant PSA-restarting,
we roll a die every nre = 100 non-contributing iterations, restarting
from a such a solution with probability pre = 0.5 or just resetting
the counter without restarting to also allow longer, more diverse ran-
domized walks of the search. We do not randomize the weights on
restart but add this later as binary parameter Irernd for the automated
tuning. In Table 2, we see the increase of about 10% in mean nor-

101 102 103

non-improving iterations

0.64

0.66

0.68

0.70

0.72

0.74

av
er

ag
e

no
rm

al
ize

d
hy

pe
rv

ol
um

e

Figure 2. Average normalized hypervolume over non-improving iterations
limit for PF-restarting for PSA with fixed number iterations.

6.4 6.6 6.8 7.0 7.2
paid hours per maximum number of employees

6.25

6.50

6.75

7.00

7.25

7.50

7.75

8.00

sp
an

 h
ou

rs
 p

er
 m

ax
im

um
 n

um
be

r o
f e

m
pl

oy
ee

s NSGA-II
REF

0

1

2

3

4

5

6

shifts splits

Figure 3. 3D non-dominated solutions created by NSGA-II for an instance
with a maximum number of 26 duties. Point size corresponds to number of

tour changes, smaller means fewer.

malized hypervolume when using restarting on our training set with
30 instances vs. the basic PSA variant.

To study the impact of the restarting parameter in more detail, we
present in Figure 2 average normalized hypervolumes on the training
set for PSA runs with different PF-restarting limits and fixed number
of iterations, e.g., a limit of 10 randomly resets a generating solution
to the current PF after ten non-improving iterations of this solution.
We observe a sweet spot at a, somewhat surprisingly, low value of
around 20, under an otherwise fixed remaining configuration. A catch
is that the runtime increases substantially with more restarting due
to more copy operations and the sampling procedure, so the actual
optimum parameter value in time-limited runs is shifted to the right.

We now open up most of the PSA parameters, also for the repul-
sion mechanism, and run irace on the 30 training instances with a
computational budget of r = 3000 and our manual configuration as
seed configuration. The parameters and irace results are summarized
in Table 3. The performance on the training instance set is shown in
Table 2. Hypervolume mean and median and distance to the reference
point look slightly better, also with less variance, the hypervolume is
better in 19/30 instances. A subsequent Wilcoxon signed rank sum
test confirms a significant difference with αtest = 0.05.

Regarding the nearest neighbor repulsion mechanism to update
the weights during the search, we could not find suitable parameters
where the search significantly benefits from these updates, in partic-
ular given the increased runtime due to finding the nearest neighbor.
Also the elite configurations for irace always kept weight updates
disabled. It could be that the effects are too small, require a speedup
in the implementation of the nearest neighbor finding using k-d trees
or event different weight update rules.

Paid time vs. other criteria. To reduce the dimensionality of the
problem, we introduce the sum spaid = smwork + swork, which are
the monetary costs for the bus operator. It corresponds to the paid
labor time due to the paid work time and, for too short duties, pay-
ing the difference time to a minimum work time of 6.5 hours. An
exemplary run with NSGA-II shows the inverse correlation between
paid time and span together with shift split. To reduce the paid time,
too short duties are avoided and fewer, longer duties with shift splits
increasing the span are created to cover the same demand more cost-

efficiently. This can be observed in an example instance with max-
imum number of duties 26 in Figure 3. We see multiple sub-fronts
with different numbers of shift splits. The size of points indicates
tour changes, smaller means fewer. The costs vary within one hour
of paid time per duty. The single triangle is a reference point derived
with the weighted-sum simulated annealing approach from [11]. We
see that a slight simultaneous reduction in paid time and span is still
possible with only one shift split, but the front already came quite
close to the reference point in this example run.

In further experiments, we add tour changes (4D) and ride time
(5D) in the normalized objective space, see Table 4. We take the man-
ually tuned parameters from before but grant 30 minutes of runtime
per instance size unit, twice as before. For 4D, PSA with restarting
performs substantially better than NSGA-II with +10% in hypervol-
ume and being twice as close to the reference point. On the other
hand, NSGA-II only performs half a million function evaluations,
while PSA performs about 10 million in the 4D case. As we expect
that the implementations can still be improved, the time-limited com-
parison has to be taken with a grain of salt. For 5D, this difference
visibly decreases as more time might be required for convergence.
Designing a crossover operator and studying long runs with the hy-
pervolume slope as convergence criterion are planned continuations.

5.3 Generalization performance

Test instances. We validate our manually and automatically tuned
algorithmic configurations for PSA with restarting on 30 unseen test
instances Itest in three dimensions. Table 5 exhibits a similar trend
as Table 2 for the training data, using the configurations from Ta-
ble 3. Another Wilcoxon signed rank sum test shows this time no sig-
nificant difference between PSA-restarting with 100 individuals and
PSA-tuned, although a type II error should be kept in mind. Based
on all tuning experiments, the starting temperature and the restarting
parameter seemed to have the most impact on the performance. Per-
forming a similar tuning and validation for 4D/5D is part of ongoing
experiments.

Real-world problem instance. We finally compare the approaches
on a real-world instance of a public transportation company of a
medium sized Central European city derived from a cooperation with
our business partner XIMES. We omit some details due to business
secrecy reasons. The hard constraints are similar, while the objec-
tives are somewhat different from the previous problem variant and
designed together with domain experts. They are the sums to be min-
imized over the following employee-wise criteria:

• excess tour changes over one tour change
• long breaks excess over 90 minutes
• span, i.e., the duty duration including breaks
• deviation from a minimum work time of 6.5 hours
• deviation from a minimum duty part length of two hours (breaks

split a shift into duty parts)

The tour changes and duty parts are penalized slightly superlinearly
with an exponent of 1.2 to have a balancing effect over the employ-
ees. Long breaks excess relates to the undesirable shift splits from be-
fore, where longer breaks are linearly penalized. The minimum work
time deviation is the main solution-dependent cost contribution.

We first compare runs optimizing for only the first three objec-
tives. The population sizes are set to 200 individuals for both NSGA-
II and PSA, otherwise we use the parameters tuned with irace from
before and grant the algorithms one hour runtime. In Figure 4 we

Table 3. Tunable parameters for PSA with manual and raced configurations.

PSA-basic PSA-restarting
N ind T0 βc Tfinal M Nequi Beta[1,β] b wms nre pre Ire

rnd

manual-3D 100 10−3 0.99 10−7 1 10 1 5 10 100 1.0 0
irace-3D 172 2 · 10−3 0.995 10−9 0.1 20 1 12 13 63 1.0 1

Table 4. Training set: 4D/5D comparison non-dominated set size |S|,
minimum normalized distance to a PF reference point dmin

ref , and normalized
hypervolume |H̃| for different configurations and individuals N ind.

|S| d̃min
ref |H̃|

dim config N ind mean mean std mean std median

4D NSGA-II 20 295 0.19 0.09 0.70 0.10 0.69
200 668 0.17 0.09 0.69 0.15 0.65

PSA-restarting 20 1 815 0.08 0.05 0.79 0.13 0.76
200 1 940 0.08 0.05 0.80 0.12 0.81

5D NSGA-II 20 464 0.20 0.08 0.65 0.11 0.62
200 1 224 0.23 0.12 0.60 0.17 0.57

PSA-restarting 20 5 560 0.17 0.12 0.61 0.21 0.55
200 6 217 0.16 0.10 0.65 0.20 0.60

see resulting non-dominated solutions in three dimensions for such
a NSGA-II and a PSA-restarting run, where the point size indicates
wasteful costs by too short duties (smaller means less) and the too
short duty parts are not shown. As expected, span and long breaks
can be optimized quite well together, as less break time reduces the
span and less span calls for a higher work to break time ratio. Tour
changes and long breaks compete with each other, since fewer tour
changes reduce the flexibility of duties to cover the demand which is
then reclaimed by creating duties that are more dispersed. As men-
tioned, the size of the markers related to deviation from the minimum
work time of 6.5 hours (not optimized for in this case), for which the
bus operators need to wastefully pay this difference to the employee.
Fewer long breaks seem also to lead to short duties as they bring
flexibility in how to cover demand fluctuations.

In the final experiment, we consider all five objectives in 10
NSGA-II runs, which performed slightly better in 3D, yielding a
mean/max normalized hypervolume of 0.56/0.61. The best run out of
ten is visualized in a parallel coordinates plot in Figure 5. We observe
that overall more time is required (span per employee) and more tour
changes if we want to avoid too short shifts, i.e., reducing operation
costs. Filters can be set on the objectives by the decision maker to
learn about trade-offs and select a suitable solution to deploy.

6 Conclusions

We presented and compared two multi-objective optimization ap-
proaches based on Pareto simulated annealing (PSA) and NSGA-II
for bus driver scheduling problems with up to five objectives. We
qualitatively analyzed and numerically quantified different trade-off

Table 5. Test set: 3D comparison non-dominated set size |S, minimum
normalized distance to a PF reference point dmin

ref , and normalized
hypervolume |H̃| for different configurations and individuals N ind.

|S| d̃min
ref |H̃|

dim config N ind mean mean std mean std median

3D NSGA-II 20 418 0.18 0.07 0.68 0.10 0.67
100 636 0.19 0.09 0.67 0.13 0.63

PSA-restarting 20 2 093 0.16 0.11 0.71 0.14 0.69
100 2 216 0.15 0.10 0.72 0.14 0.70

PSA-tuned 172 2 066 0.14 0.09 0.73 0.13 0.71

0 1 2 3 4 5 6 7
excess tour changes

0

5

10

15

20

25

lo
ng

 b
re

ak
s e

xc
es

s /
 e

m
pl

oy
ee

 [m
in

]

NSGA-II
PSA

8.8

8.9

9.0

9.1

9.2

9.3

span / em
ployee [h]

Figure 4. Real-world instance: 3D non-dominated solutions created by
NSGA-II and PSA. The size of the points relates to the wasteful costs
(smaller means less) in terms of deviation from a minimum duty span.

relations between costs for bus operators and shift convenience fea-
tures for drivers like fewer tour changes and shift splits. We tuned our
approaches manually and with irace on a training set and validated
them on a test set and one real-world instance of a Central Euro-
pean city provided by a project partner. Both approaches allow to en-
able decision makers to perform more informed choices. A mutation
only NSGA-II provides a solid baseline with few tunable parame-
ters, while a tuned PSA variant with heavy randomized restarting
from the non-dominated solution performs overall best in terms of
average normalized hypervolume and distance to a reference point.
Future work is concerned with investigating the impact of other ran-
domized construction heuristics and implementing a crossover op-
erator for NSGA-II based on the duty blocks of the parent individ-
uals. Furthermore, learning informed non-dominated-solution selec-
tion strategies as part of the restarting, e.g., biasing towards regions
where more gain in hypervolume is expected, could be an interesting
research path.

Figure 5. Real-world instance: 5D non-dominated solutions as parallel
coordinates plot for real-world instance with filters set on long breaks excess

and short work time.

Acknowledgements
The financial support by the Austrian Federal Ministry for Digital
and Economic Affairs, the National Foundation for Research, Tech-
nology and Development and the Christian Doppler Research Asso-
ciation is gratefully acknowledged.

References
[1] T. Banerjee, A. Biswas, A. A. Shaikh, and A. K. Bhunia. An applica-

tion of extended NSGA-II in interval valued multi-objective scheduling
problem of crews. Soft Computing, pages 1–18, 2022.

[2] P. Czyzżak and A. Jaszkiewicz. Pareto simulated annealing—a meta-
heuristic technique for multiple-objective combinatorial optimization.
Journal of multi-criteria decision analysis, 7(1):34–47, 1998.

[3] R. De Leone, P. Festa, and E. Marchitto. A bus driver scheduling prob-
lem: a new mathematical model and a GRASP approximate solution.
Journal of Heuristics, 17(4):441–466, 2011.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE transactions on evo-
lutionary computation, 6(2):182–197, 2002.

[5] A. Drexl and Y. Nikulin. Multicriteria airport gate assignment and
pareto simulated annealing. IIE Transactions, 40(4):385–397, 2008.

[6] M. Ehrgott and D. M. Ryan. Constructing robust crew schedules with
bicriteria optimization. Journal of multi-criteria decision analysis, 11
(3):139–150, 2002.

[7] C. M. Fonseca, L. Paquete, and M. López-Ibánez. An improved
dimension-sweep algorithm for the hypervolume indicator. In 2006
IEEE international conference on evolutionary computation, pages
1157–1163. IEEE, 2006.

[8] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné. DEAP: Evolutionary algorithms made easy. Journal of Ma-
chine Learning Research, 13:2171–2175, jul 2012.

[9] O. J. Ibarra-Rojas, F. Delgado, R. Giesen, and J. C. Muñoz. Planning,
operation, and control of bus transport systems: A literature review.
Transportation Research Part B: Methodological, 77:38–75, 2015.

[10] F. Jolai and G. Assadipour. A hybrid cellular genetic algorithm for
multi-objective crew scheduling problem. In Hybrid Artificial Intel-
ligence Systems: 5th International Conference, HAIS 2010, San Se-
bastián, Spain, June 23-25, 2010. Proceedings, Part I 5, pages 359–367.
Springer, 2010.

[11] L. Kletzander and N. Musliu. Solving large real-life bus driver schedul-
ing problems with complex break constraints. In Proceedings of the
International Conference on Automated Planning and Scheduling, vol-
ume 30, pages 421–429, 2020.

[12] L. Kletzander and N. Musliu. Dynamic weight setting for personnel
scheduling with many objectives. Proceedings of the International Con-
ference on Automated Planning and Scheduling, 33(1):509–517, 2023.

[13] L. Kletzander, N. Musliu, J. Gärtner, T. Krennwallner, and
W. Schafhauser. Exact methods for extended rotating workforce
scheduling problems. Proceedings of the International Conference on
Automated Planning and Scheduling, 29:519–527, 2019.

[14] L. Kletzander, N. Musliu, and P. Van Hentenryck. Branch and price
for bus driver scheduling with complex break constraints. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 35, pages
11853–11861, 2021.

[15] L. Kletzander, T. M. Mazzoli, and N. Musliu. Metaheuristic algorithms
for the bus driver scheduling problem with complex break constraints.
In Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pages 232–240, 2022.

[16] J. Li and R. S. Kwan. A fuzzy genetic algorithm for driver scheduling.
European Journal of Operational Research, 147(2):334–344, 2003.

[17] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and
T. Stützle. The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives, 3:43–58, 2016.

[18] H. R. Lourenço, J. P. Paixão, and R. Portugal. Multiobjective meta-
heuristics for the bus driver scheduling problem. Transportation sci-
ence, 35(3):331–343, 2001.

[19] T. M. Mazzoli, L. Kletzander, P. Van Hentenryck, and N. Musliu. In-
vestigating large neighbourhood search for bus driver scheduling. In
Proceedings of the Internat. Conference on Automated Planning and
Scheduling, volume 34, pages 360–368, 2024.

[20] F. Mischek and N. Musliu. Preference explanation and decision sup-
port for multi-objective real-world test laboratory scheduling. In Pro-
ceedings of the International Conference on Automated Planning and
Scheduling, volume 34, pages 378–386, 2024.

[21] G. Misitano, B. Afsar, G. Lárraga, and K. Miettinen. Towards explain-
able interactive multiobjective optimization: R-XIMO. Autonomous
Agents and Multi-Agent Systems, 36(2):43, 2022.

[22] S. Verma, M. Pant, and V. Snasel. A comprehensive review on NSGA-II
for multi-objective combinatorial optimization problems. IEEE access,
9:57757–57791, 2021.

[23] A. Wren and J.-M. Rousseau. Bus driver scheduling—an overview. In
Computer-Aided Transit Scheduling: Proceedings of the Sixth Interna-
tional Workshop on Computer-Aided Scheduling of Public Transport,
pages 173–187. Springer, 1995.

