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Abstract. Multi-objective Reinforcement Learning (MORL) al-
gorithms need to effectively scale to a large number of objectives
to be practical for real-world applications. We introduce Lorenz-
conditioned networks (LCNs), a novel multi-policy algorithm de-
signed to provide Lorenz-optimal sets of policies, even when scaling
up to 10 different objectives. LCN uses Lorenz optimality to learn
policies that ensure a fair distribution of rewards among different
objectives. Additionally, we address the lack of real-world MORL
benchmarks, by introducing a large-scale, multi-objective environ-
ment for real-world transportation network design. Our experiments
in the city of Xi’an in China demonstrate LCN’s ability to learn fair
policies in high-dimensional state-action and reward spaces.

1 Introduction

Reinforcement Learning (RL) is a powerful method for identify-
ing optimal policies in sequential decision-making problems [49]. In
these settings, agents learn to take actions in an environment in order
to maximize expected long-term rewards [46].

Rewards are commonly formalized by combining different criteria
(or objectives) into a scalar value [17]. Real-world problems can,
however, involve multiple, often conflicting objectives. Formalizing
a scalar reward before training can result in a biased decision-making
process that overlooks desirable solutions that differ primarily in the
weighting of the objectives [48].

To address this challenge, Multi-Objective Reinforcement Learn-
ing (MORL) uses vector-valued (instead of scalar) rewards [17].
Rather than learning a single policy maximizing a scalar reward,
MORL learns multiple policies, which can later be used by decision-
makers according to their preferences. MORL has revealed promis-
ing results in decision-making under unknown preferences [38, 3],
human-value alignment [32, 37, 19], multi-agent games [42, 41], and
others [48].

A key motivation for MORL is uncertainty about the decision-
maker’s utility function before training. Multi-policy methods,
wherein agents learn a set of possibly optimal policies, alleviate this
issue by assuming a monotonically increasing utility function and
optimizing simultaneously for all objectives [26, 17, 34]. Optimizing
for all possible utility functions, however, can be computationally in-
tractable when the objective space is large [30]. Additionally, by not
factoring in the result of combining objectives, multi-policy methods
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Figure 1: Lorenz-optimal policies lead to a more equal distribution
of rewards across different objectives (i.e., closer to the diagonal in
the example above). Pareto-optimal policies, instead, include policies
that can lead to unequal rewards.

might waste resources exploring policy spaces leading to outcomes
that, down the line, will be superfluous to a decision-maker.

Algorithmic fairness suggests, precisely, problems, where some
policies identified by MORL might be undesirable [20, 9] and ide-
ally filtered out at training time. In domains where objectives rep-
resent the interests of different societal groups, policies leading to
unfair distributions of rewards may generally be undesirable. We can
thus take advantage of this knowledge and restrict the set of possible
solutions, providing fairness guarantees to the decision-maker, and
increasing computational tractability.

We present an example of such a problem in urban planning: de-
signing new transportation lines. Reinforcement learning can be used
to optimize the location of new transportation lines [52, 33, 28]. Plan-
ners must ensure that new lines are both efficient and that their bene-
fits are fairly distributed among groups in a city [27]. Thus, a solution
set that includes all optimal trade-offs (like the Pareto front), contains
undesirable policies, whose distribution of rewards is disproportion-
ate among different groups.

To solve this problem, we introduce Lorenz Conditioned Net-
works (LCN), a multi-policy method that encourages fair policy dis-
covery at training time, while alleviating the computation burden of
multi-policy algorithms. LCN is based on Lorenz optimality, a refine-
ment of Pareto optimality that ensures a fair distribution of rewards
between objectives [44, 31]. As shown in Figure 1, Lorenz optimality
leads to a subset of the Pareto front only composed of fair solutions.

Furthermore, we address the lack of real-world benchmarks for
MORL [12] by introducing a new large-scale, multi-objective envi-



ronment for designing transportation networks in real-world cities.
Through experiments in Xi’an, we demonstrate that LCN can learn
fair policy sets in large environments: as Lorenz-optimal sets tend to
be smaller than Pareto-optimal ones [31], LCN shows great scalabil-
ity, especially in high-dimensional objective spaces.

2 Related Work
Our work lies at the intersection of multi-policy methods for MORL
[17] and algorithmic fairness in sequential decision-making prob-
lems [16].

2.1 Multi-Policy MORL

Several multi-policy methods have been proposed to tackle MORL
problems, involving learning multiple policies that specialize in dif-
ferent trade-offs [34].

Initial multi-policy methods used Pareto Q-Learning and were lim-
ited to small-scale environments [29, 40]. To scale up multi-policy
methods to high-dimensional state and action spaces, many works
assume that decision-makers have linear preferences, resulting in a
simpler solution set called the convex coverage set [1, 4, 34, 38, 39].
Our work does not make such an assumption and instead focuses on
obtaining policies with a fairly distributed reward between the dif-
ferent objectives. In multi-objective optimization, GFlowNets-based
methods have been proposed to generate diverse optimal solution
candidates [21]. Our work relates to these as it can be used to gen-
erate diverse candidates; however, our model learns policies instead
of solutions and thus can be used beyond static optimization prob-
lems (e.g. demand-responsive transport [5]). Lastly, the most rele-
vant method to our approach are the so-called Pareto Conditioned
Networks (PCNs) [34, 35, 11], a scalable approach to multi-policy
learning. In this method, a single network is trained to learn all op-
timal policies in a Pareto front. Our method is inspired by PCNs,
yet here we focus on fairness considerations, allowing scalability to
higher dimensions while learning a set of fair policies. We demon-
strate its effectiveness in the real-world problem of transportation
network design.

2.2 Fairness in Reinforcement Learning

Research in Fairness in RL can be categorized along two main
themes [16]: fairness in domains where individuals belong to pro-
tected groups (societal bias) and fairness in resource allocation prob-
lems (non-societal bias). Our work aligns more closely with the first
theme, focusing on the fair distribution of benefits, such as public
transport, among different societal groups.

Fairness inherently involves balancing multiple objectives. In this
theme, many works combine diverse objectives into single fairness-
based rewards. This is achieved through linear combinations [36, 8],
generalizations to non-linear combinations, and welfare functions
like the Generalized Gini Index [45, 18, 13], and other reward-
shaping mechanisms [55, 53, 25, 22]. Alternatively, some methods
adjust the reward function during training to adhere to fairness con-
straints [7]. These approaches require encoding the desirable princi-
ples into reward functions beforehand, whereas our approach makes
no such assumptions.

Our work therefore relates closely to Cimpean et al. [9]’s formal
MORL fairness framework, which encodes six fairness notions as
objectives. They then train PCNs to identify Pareto-optimal trade-
offs between these fairness notions. While our method can be applied

within this framework, it does not pre-calculate any fairness notion.
Instead, it optimizes for all group objectives directly, allowing the
decision-maker to define their criteria after training.

3 Preliminaries
3.1 Multi-Objective Reinforcement Learning

When multiple optimal policies can exist, optimizing a single pol-
icy to maximize the expected return is not possible. Thus, Multi-
Objective Reinforcement Learning problems are modeled as Multi-
Objective Markov Decision Processes (MOMDPs) and are repre-
sented as a tuple M = ⟨S,A,P,R, γ⟩ consisting of a set of states
S, set of actionsA, transition function P : S ×A×S, vector-based
reward function R : S × A × S → Rd, with d ≥ 2 the number of
objectives, and a discount factor γ.

When the reward is vector-based, a common solution set to opti-
mize for is the Pareto front, a set of non-Pareto-dominated policies.
Let v,v′ ∈ Rd be d dimensional vectors, and vi the ith coordinate
of v, where i ∈ {1, 2, ..., d}. We say that vector v Pareto dominates
vector v′, if and only if [17]:

v ≻P v′ ⇐⇒ (∀i : vi ≥ v′i) ∧ (∃i : vi > v′i) (1)

In essence, v Pareto dominates v′ when it is at least equal for all ob-
jectives and better in at least one. The Pareto front contains vectors
that cannot be improved on one objective without deteriorating an-
other. When objectives correspond to outcomes for different groups,
not all vectors in the Pareto front adhere to fairness criteria.

3.2 Fairness in MOMDPs

Various definitions of fairness exist in decision-making and ma-
chine learning [6], aiming at encapsulating notions of fairness
through a single metric. However, this approach requires specify-
ing preferences over objectives, a challenge not commonly tackled
in MOMDPs.

Here, we focus on the distribution of the benefits of a decision
among individuals or groups, each represented by a different objec-
tive. While this introduces a general preference for fairness, it does
not explicitly encode it into a scalarization function (e.g., relative
weights are not set).

As shown in Figure 1, Pareto dominance may lead to sets that in-
clude policies with undesired outcomes in terms of fairness. There-
fore, our methods rely on Lorenz dominance, a refinement of Pareto
dominance that considers the distribution of values within the vec-
tor [31], and has traditionally been used in economics to assess
income inequality [44]. First, we define a Lorenz vector L(v) of

a vector v as L(v) =
(
v(1), v(1) + v(2), ...,

∑d
i=1 v(i)

)
, where

v(1) ≤ v(2) ≤ ... ≤ v(d) are the values of the vector v, sorted in
increasing order. Lorenz dominance is equivalent to the Pareto dom-
inance of one Lorenz vector L(v) over another Lorenz vector L(v′)
[31, 17].

v ≻L v′ ⇐⇒ L(v) ≻P L(v′)

⇐⇒ (∀i : L(v)i ≥ L(v′)i) ∧ (∃i : L(v)i > L(v′)i)
(2)

In MORL, we define vectors vπ,vπ′
as the expected return of the

policies π, π′, across all objectives of the environment respectively.
Therefore, a policy will Lorenz dominate another policy, if and only
if its Lorenz vector L(vπ) is greater than or equal on all objectives



than L(vπ′
), and there exists at least one objective where it is better

[17].
Lorenz-Conditioned Networks search for non-Lorenz dominated

policies that form the Lorenz set. The set of non-dominated value
vectors is called a coverage set, wherein the optimal coverage set is
represented by the Pareto front [17]. A Lorenz coverage set is usually
(but not necessarily) significantly smaller than a Pareto coverage set
[31].

Figure 2: We introduce Lorenz Conditioned Networks (LCNs), a
multi-policy method that offers fair trade-offs to decision makers
(left). We also introduce reference points for enhancing the training
process by filtering the Experience Replay buffer (right).

4 Methodology

We introduce Lorenz-Conditioned Networks (LCN), a single, multi-
policy model for fair policy search. Here we describe its main com-
ponents and introduce the LCN reference points extension (Section
4.4). Algorithm 1 shows an overview of how LCN works.

4.1 Reward Conditioned Networks

LCNs fall under the category of conditioned networks, where a single
neural network is trained through supervised learning to learn multi-
ple policies [23, 34]. These policies map states and desired rewards
to probability distributions over actions, by collecting experiences,
using actions as labels and state/rewards as input.

Specifically, LCN learns policies πθ(at|st, ĥt, Ĝt), where at is
the next action the agent will take, st is the current state, ĥt is the
desired horizon (steps until the episode ends — this is for environ-
ments with varied episode length) and Ĝt is the desired return of
the episode, starting from time step t. Note that Ĝt is a vector, with
dimension d equal to the number of objectives.

The network maps an input tuple ⟨st, ĥt, Ĝt⟩ to an output prob-
ability distribution over the next actions πθ(at|st, ĥt, Ĝt). Assum-
ing the agent takes discrete actions, the training process is similar
to multi-label classification, with the actions as the classes. The net-
work updates its parameters using a cross-entropy loss function and
the Adam optimizer, in accordance with previous works [23, 34].

H = −
∑
a∈A

ya log π(at|st, ht,Gt) (3)

where ya,t = 1 if at = a and 0 otherwise. Note that in Equation 3
we do not use the desired horizon ĥt and return Ĝt. That is because

supervised learning occurs on previously collected experiences (ex-
plained in Section 4.2). The agent learns independently without imi-
tation learning or expert trajectories; it relies on its own collected ex-
periences. Therefore, it learns sub-optimal policies, which however
are optimal for the conditioned desired return Ĝt [23]. Essentially,
given a sufficient number of good experiences, the agent will learn
good policies. Neural network capabilities can lead to generalization
to better policies by modifying the condition [34].

4.2 Constructing the Experience Replay Buffer

Conditioned networks follow a training process to learn a policy πθ ,
through two alternating steps: collecting and storing experiences in
the Experience Replay (ER) buffer by interacting with the environ-
ment and training the policy on previously collected experiences us-
ing supervised learning [23, 34]. They are thus off-policy methods,
with πθ starting in a random state.

The experiences are stored as ⟨st, ĥt, Ĝt⟩ in the ER buffer. The
quality of trajectories and collected experiences is crucial for the
effectiveness of supervised learning training. To ensure policy im-
provement, the ER buffer is constantly updated, with new and better
experiences replacing older ones.

The primary mechanism for achieving this improvement in condi-
tioned networks is through continuous improvement of the condition.
This is achieved by randomly selecting a non-dominated return from
the current coverage set and increasing its value by a sample from a
uniform distribution U(0, σo), where σo represents the standard de-
viation of all non-dominated points in the ER buffer [34]. The result-
ing updated return is then used as the input Ĝt in the policy network.
The next step to improve the buffer is its filtering mechanisms.

Algorithm 1 LCN Algorithm

1: θ ← random initial parameters
2: B ← sample BufferSize random < st, at, ht, Gt >
3: BND ← non-Lorenz-dominated Gt ∈ B
4: for step ≤ TotalTimesteps do
5: Ĝt ← Gt + U(0, σ0) ▷ Gt sampled from BND
6: Generate episodes {st, at, ht, Gt}Tt=0 using πθ(Ĝt, ĥt)
7: for timestep t do
8: Add < st, at, ht, Gt > to B
9: Filter B according to Equation 4

10: BND ← non-Lorenz-dominated Gt ∈ B
11: end for
12: Train Model after every TrainModelSteps
13: Sample batch b ∼ B of size BufferSize, predictions

π(at|st, ht,Gt)
14: Compute Hb using Equation 3
15: θ ← θ − α∇θHb

16: end for
17:
18: Return Trained parameters θ

4.3 Filtering experiences via Lorenz-dominance

During exploration, new experiences replace older ones via a
distance-based mechanism. In a previous method (PCNs), expe-
riences in the buffer are evaluated based on their distance from
the closest non-Pareto-dominated point in the buffer. In addition, a
crowding distance is calculated for each point, measuring its distance



to its closest neighbors [10]. Points that are too close to other neigh-
bors have a large crowding distance and are penalized, increasing
the likelihood of being replaced compared to sparser points. This en-
sures that ER experiences are distributed across the objective space,
facilitating faster attainment of Pareto coverage sets [34].

Lorenz Conditioned Networks (LCN), on the other hand, seek
fairly distributed policies using Lorenz dominance. Thus, the eval-
uation of each experience ei in the Experience Replay buffer B is de-
termined by its proximity to the nearest non-Lorenz dominated point
lj ∈ L (B) ⊆ B. In Figure 2 (left) we show an example of this
distance calculation.

We denote the distance between an experience ei and a reference
point ti as dei,ti = ||ei− ti||2, where ti = argmin ||ei− lj ||2 is the
nearest non-Lorenz-dominated point, to be referred to as reference
point. In Section 4.4 we devise mechanisms for reference points. We
formalize the final distance for the evaluation with the dominance
score dsLorenz,i as follows:

dsLorenz,i =

{
dei,ti if dcd,i > τcd

2(dei,ti + c) if dcd,i ≤ τcd
(4)

Where dcd is the crowding distance of i and τcd is the crowding
distance threshold. A constant penalty c is added to the points below
the threshold, whose distance is also doubled [34]. The points in the
ER buffer are sorted based on dsLorenz and those with the highest get
replaced first when a better experience is collected.

4.4 Improving Training with Reference Points

The nearest-point filtering method has two drawbacks. Firstly, dur-
ing exploration, stored experiences undergo significant changes as
the agent discovers new and improved trajectories. This leads to
a volatile ER buffer and moving targets, posing stability chal-
lenges during supervised learning. Secondly, given fairness consid-
erations, it is known in advance that certain experiences, even if non-
dominated, are undesirable due to their unfair distribution of rewards.

Consider, for example, vectors: v = (8, 0),w = (3, 4) and their
corresponding Lorenz vectors L(v) = (0, 8), L(w) = (3, 7). Both
v and w are non-Lorenz dominated, and would typically be used as
targets for evaluating other experiences. However, v is not a desir-
able target due to its unfair distribution of rewards (this is essentially
a limitation of Lorenz dominance, when one objective is very large).
To address these issues, we propose leveraging fairness constraints
to define reference points for distance calculations. We introduce
two reference point mechanisms: a redistribution mechanism and
a mean reference point mechanism.

4.4.1 Redistributed Reference Point (LCN-Redist)

This mechanism draws inspiration from the Pigou-Dalton principle
in welfare economics [2]. Consider a vector v ∈ Rd, where vi >
vj for some i, j. Then, for any ϵ, 0 < ϵ ≤ vi − vj , the vector
v′ = v − ϵIvi + ϵIvj , where Ivi and Ivj are vectors with 1 at the
ith and jth elements, respectively, and 0 elsewhere is preferable to
v, because the transfer resulted in a more desirable distribution of
rewards while maintaining the total sum at the same level [31]. In
the example we provided above, given ϵ = 4, v′ = (4, 4) is more
desirable than v = (8, 0), while the sum of rewards remains the
same.

Under this axiomatic principle, any experience in the ER buffer
can be adjusted to provide a more desirable one. We employ this

transfer mechanism to create the most desirable out of all collected
experiences by identifying the one with the highest sum of rewards
and performing a transfer, evenly distributing the total reward across
all dimensions of the vector. This is then assigned as the new refer-
ence point t for all experiences e ∈ B:

tredist =
1

n

(
argmax

e∈D

n∑
j=1

ej

)
1, (5)

where 1 is a vector of ones with dimension d. Note that t is now
the same for all e ∈ B. Subsequently, we measure the distances of
all e ∈ B to this newly defined reference point and filter out those
that are farthest from it, according to Equation 4 (replace ti with
tredist). In Figure 2 (right), we illustrate this transfer mechanism. As
the collected experiences get better via exploration and conditioning,
so does the reference point tredist, which ensures an equal distribution
over the rewards. This in time leads to the promotion of efficient and
fair experiences.

4.4.2 Non-Dominated Mean Reference Point (LCN-Mean)

The redistributed reference point we outlined in Section 4.4.1 is gen-
erated by focusing solely on experience with the highest sum of re-
wards. However, this approach disregards other experiences, leading
to the creation of unrealistic reference points, which may introduce
bias in favor of utopic solutions, disadvantaging other viable options
that, while not perfectly equal, are still sufficiently good.

To address this limitation, we propose an alternative reference
point mechanism: a straightforward averaging of all non-Lorenz
dominated vectors in the experience replay (ER) buffer. This ap-
proach provides a simpler and more targeted method for incorporat-
ing collected experiences, while simultaneously smoothing out out-
lier non-dominated points. The reference point, denoted as tmean, is
defined as follows: Let L (D) = {l1, l2, . . . , lj} represent the set of
non-Lorenz dominated experiences in the ER buffer,

tmean =
1

|L (D) |
∑

lj∈L(D)

lj (6)

In Figure 2 (right) we show how this approach defines a refer-
ence point. It is important to emphasize here that both mechanisms
outlined above are used for defining reference points, not the con-
ditioned return the model is trained on, which continues to be the
collected experiences.

5 Experiment Setup
Existing MORL benchmarks are often small-scale, with small state-
action spaces or low-dimensional objective spaces [47, 24]. We in-
troduce a novel and modular MORL environment, named the Multi-
Objective Transport Network Design Problem (MO-TNDP). MO-
TNDP is inspired by the real-world challenge of transportation de-
sign, with a large state-action space and adaptability to high-reward
dimensions.

5.1 Multi-Objective Transport Network Design
Problem (MO-TNDP)

Built on MO-Gymnasium [15], the MO-TNDP environment 1 sim-
ulates the design of public transportation networks in cities of vary-
ing size and morphology, addressing TNDP, an NP-hard optimization

1https://github.com/sias-uva/mo-tndp

https://github.com/sias-uva/mo-tndp


Figure 3: An instance of the MO-TNDP environment for designing
transportation networks in real-world cities, illustrated using data
from the city of Xi’an, China, provided by Wei et al. [52]. Panel
A displays the aggregate Origin-Destination Demand per cell, repre-
senting the sum of all incoming and outgoing flows. Panel B catego-
rizes each cell into quintiles based on the house price index, showing
the group membership of each cell.

problem aiming to generate a transportation line that maximizes the
satisfied travel demand [14].

In MO-TNDP, a city is represented as Hm×n, a grid with equally
sized cells. The mobility demand forecast between cells is captured
by an Origin-Destination (OD) flow matrix OD|H|×|H|. Each cell
h ∈ Hn×m is associated with a socioeconomic group g ∈ G, de-
fined by indicators such as income or the development index, which
determine the dimensionality of the reward function. In this paper,
we scale it from 2 to 10 groups (objectives).

Episodes start in a specified (or random/learned) cell and last a pre-
defined number of steps. A single agent traverses the city, connect-
ing grid cells with eight available actions (movement to the neigh-
bor cell in all directions). At each time step, the agent receives a
vectorial reward with dimension d = |G|, each corresponding to
the percent satisfied demand of each group. We formulate it as an
MOMDP M = ⟨S,A,P,R, γ⟩, where S is the current location
of the agent (grid cell), A is the next direction of movement and
R : S × A × S → Rd is the additional demand satisfied by taking
the last action (connecting previously visited cells) for each group.
Given the discrete, episodic nature the discount factor γ = 1. The
transition function P is deterministic and each episode starts from
the same state. Note that MO-TNDP is deterministic, but LCN can
also be used in stochastic environments.

Additional directional constraints can be imposed on the agent ac-
tion space. The environment code enables developers to modify the
city object, incorporating adjustments to grid size, OD matrix, cell
group membership, and directional constraints, making it adaptable
to any city. It supports both creating new transportation networks and
expanding existing ones, identifying connections, and calculating the
additional satisfied demand of new lines.

Here, we focus on the city of Xi’an in China, in a grid that con-
tains a total of 841 cells. The agent is constrained to design typical
metro lines, avoiding circular directions. Group membership for each
cell is determined by the average house price, which is divided into
2-10 equally sized buckets. Figure 3 illustrates an instance for Xi’an
for five objectives. Note that MO-TNDP is a single-agent environ-
ment, though our method can be adapted to multi-agent environments
where rewards represent payoffs of different agents.

Through Bayesian hyperparameter search of 100 runs, we tuned
the batch size, learning rate, ER buffer size, number of layers, and
hidden dimension across all reported models, environments, and ob-

jective dimensions. We compare LCN with the baseline PCN [34].
We provide the code of the repository, which contains details of the
hyperparameters for each different setting 2.

5.2 Evaluation

Hypervolume: a widely used metric in multi-objective decision-
making [50, 51, 34], assesses the quality of a set of non-dominated
solutions by considering its closeness to the Pareto front, diversity,
and spread. This metric measures the volume of a set of points rel-
ative to a specific reference point and is maximized for the Pareto
front.

HV(CS,Vref ) =
⋃

π∈CS

Volume(Vref ,V
π), (7)

where Volume(Vref ,V
π) is the volume of the hypercube spanned

by a reference vector Vref and the coverage set vector V π [17].
Sen Welfare: a welfare function that combines total efficiency and

equality into a single measure. Total efficiency is the cumulative sat-
isfied demand across all groups, while equality is expressed through
the Gini coefficient—a quantification of the Lorenz curve that mea-
sures reward distribution among groups (with 0 indicating perfect
equality and 1 perfect inequality) [43]. The final score is measured
by multiplying total efficiency by (1− Gini Index).

SW(π) =
∑
i

vπ
i (1− GI(vπ)), (8)

Where
∑
i

vπ
i is the sum of the returns of all objectives in policy

π, and GI(vπ) is the Gini index of the return of policy π. Note that
here we introduce a welfare function for comparative purposes, re-
flecting a balanced scenario where both efficiency and equality are
considered. Sen welfare has been utilized in economic simulations
employing Reinforcement Learning techniques before [54]. How-
ever, alternative welfare functions can be employed to better align
with the decision-maker’s preferences. A higher Sen welfare value
signifies increased satisfaction of total demand and a more equitable
distribution among groups.

6 Results
The results discussed in this section are based on 5 different random
seeded runs. Figure 4 presents a comparison between PCN and LCN
in Hypervolume and Sen Welfare across all objectives within the
MO-TNDP-Xi’an environment. Table 1 displays the (normalized for
each objective) Sen Welfare results for all proposed models across all
objectives (both environments). Comprehensive results for all evalu-
ation metrics and environments are available in Table 1.

6.1 LCN outperforms PCN on high-dimensional
reward spaces

As shown in Figure 4, PCN shows strong performance on hypervol-
ume, outperforming our proposed LCN model in scenarios with 2–4
objectives. This is expected, as PCN is designed to learn diverse, non-
Pareto-dominated solutions, which maximize hypervolume. How-
ever, for larger objective spaces (more than 5), LCN surpasses PCN
even in hypervolume, a metric it is not specifically designed for. This
occurs because, given the high state-action space of the environment,

2https://github.com/sias-uva/mo-transport-network-design

https://github.com/sias-uva/mo-transport-network-design


Table 1: Results of all models, for 1–10 objectives. Underline indicates the best results.
Normalized Hypervolume

Number of Objectives
Xi’an 2 3 4 5 6 7 8 9 10
PCN 0.92± 0.02 0.89± 0.03 0.63± 0.10 0.57± 0.11 0.38± 0.09 0.11± 0.05 0.02± 0.01 0.00± 0.00 0.00± 0.00
LCN 0.81± 0.06 0.54± 0.02 0.62± 0.02 0.46± 0.07 0.50± 0.15 0.69± 0.08 0.76± 0.07 0.70± 0.09 0.71± 0.16
LCN-Redist. 0.76± 0.03 0.44± 0.03 0.50± 0.06 0.57± 0.10 0.86± 0.04 0.44± 0.16 0.65± 0.05 0.39± 0.10 0.53± 0.22
LCN-Mean 0.77± 0.03 0.43± 0.03 0.44± 0.03 0.32± 0.10 0.57± 0.04 0.32± 0.11 0.38± 0.06 0.36± 0.13 0.33± 0.13

Normalized Sen Welfare
Xi’an 2 3 4 5 6 7 8 9 10

PCN 0.81± 0.02 0.70± 0.01 0.64± 0.01 0.63± 0.01 0.57± 0.01 0.49± 0.01 0.29± 0.01 0.32± 0.01 0.35± 0.01
LCN 0.84± 0.03 0.89± 0.01 0.88± 0.01 0.78± 0.04 0.67± 0.04 0.76± 0.01 0.86± 0.01 0.82± 0.01 0.93± 0.01
LCN-Redist. 0.94± 0.01 0.91± 0.01 0.93± 0.01 0.80± 0.01 0.73± 0.01 0.77± 0.02 0.60± 0.01 0.50± 0.01 0.55± 0.02
LCN-Mean 0.93± 0.02 0.85± 0.03 0.75± 0.02 0.84± 0.03 0.84± 0.03 0.71± 0.01 0.79± 0.01 0.82± 0.02 0.78± 0.03

Gini Index (the lower the better)
Xi’an 2 3 4 5 6 7 8 9 10
PCN 0.13± 0.02 0.23± 0.01 0.32± 0.01 0.32± 0.01 0.36± 0.01 0.37± 0.01 0.45± 0.01 0.45± 0.00 0.49± 0.01
LCN 0.09± 0.02 0.09± 0.01 0.12± 0.01 0.17± 0.02 0.23± 0.02 0.28± 0.01 0.23± 0.01 0.21± 0.01 0.19± 0.01
LCN-Redist. 0.04± 0.01 0.04± 0.01 0.08± 0.01 0.15± 0.01 0.20± 0.01 0.20± 0.01 0.28± 0.01 0.29± 0.01 0.35± 0.01
LCN-Mean 0.07± 0.01 0.10± 0.02 0.20± 0.01 0.15± 0.01 0.21± 0.02 0.29± 0.01 0.21± 0.01 0.23± 0.01 0.25± 0.02

Figure 4: The proposed LCN (no reference points) outperforms PCN
across all objectives in the Sen Welfare measure (Xi’an environ-
ment). Additionally, LCN outperforms PCN in hypervolume when
the number of objectives > 4, showcasing the scalability of LCN in
contrast with the limitations of PCN.

the non-Pareto-dominated solutions significantly expand with objec-
tives, making the supervised training of PCN challenging. Further-
more, we observe that for objectives exceeding 7, PCN collapses,
failing to achieve good diverse policies. In contrast, LCN effectively
scales across the objective space, leveraging the smaller non-Lorenz-
dominated set.

LCN consistently outperforms PCN on Sen Welfare across all ob-
jectives. The Sen Welfare metric, which promotes solutions balanc-
ing efficiency and equality, shows that LCN excels in generating ef-
fective policies even when the solution space is constrained. Notably,
LCN maintains its superior performance relative to PCN even as the
number of objectives increases. LCN additionally outperforms PCN
on total efficiency and the Gini coefficient of the proposed policies,
as shown in Table 1.

6.2 Reference points can improve training

In Table 1, we compare the reference point mechanisms (LCN-Redist
and LCN-Mean) to PCN and LCN across all numbers of objectives
on Hypervolume, Sen Welfare and Gini Index. Both reference point

mechanisms outperform PCN and mostly outperform LCN.
LCN-Redist is effective when the reward space is small, as redis-

tributing the best over a few objectives leads to a reference point that
is closer to the rest of the ER buffer. However, its stability diminishes
with an increasing number of objectives, showing very high variance.

LCN-Mean performs great in Sen Welfare across all objectives,
offering better stability than LCN-Redist. This result is expected, as
LCN is designed to maximize Sen Welfare. LCN-Mean effectively
balances outliers and creates reference points that balance efficiency
and equality with minimal intervention.

7 Conclusion
We introduced LCN, a novel model to nudge fair solutions, at train-
ing time, in multi-objective reinforcement learning. This is accom-
plished via a single network to generate multiple policies. We de-
veloped a new, multi-objective environment for simulating Public
Transport Network Design, thereby enhancing the applicability of
MORL to real-world scenarios. Our findings demonstrate that LCN
outperforms the baseline PCN in fairness and, furthermore, surpasses
PCN in hypervolume when the objective space increases. These con-
tributions move the research field toward more realistic and appli-
cable solutions in real-world contexts, thereby advancing the state-
of-the-art in algorithmic fairness in sequential decision-making and
MORL.
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R. Rădulescu. Divide and conquer: Provably unveiling the pareto
front with multi-objective reinforcement learning. arXiv preprint
arXiv:2402.07182, 2024.

[40] M. Ruiz-Montiel, L. Mandow, and J.-L. Pérez-de-la Cruz. A temporal
difference method for multi-objective reinforcement learning. Neuro-
computing, 263:15–25, Nov. 2017. ISSN 0925-2312. doi: 10.1016/
j.neucom.2016.10.100. URL https://www.sciencedirect.com/science/
article/pii/S0925231217310998.

[41] W. Röpke. Reinforcement Learning in Multi-Objective Multi-Agent
Systems. 2023.
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