
Introducing FedPref: Federated Learning Across
Heterogeneous Multi-objective Preferences

Maria Hartmanna,*, Grégoire Danoya,b and Pascal Bouvryb

aSnT, University of Luxembourg, Luxembourg
bFSTM/DCS, University of Luxembourg, Luxembourg

Abstract. Multi-objective problems occur in all aspects of life;
knowing how to solve them is crucial for accurate modelling of
the real world. Rapid progress is being made in adapting traditional
machine learning paradigms to the multi-objective use case, but so
far few works address the specific challenges of distributed multi-
objective learning. Federated Learning is a distributed machine learn-
ing paradigm introduced to tackle problems where training data orig-
inates in distribution and cannot be shared. With recent advances in
hardware and model capabilities, Federated Learning (FL) is finding
ever more widespread application to problems of increasing com-
plexity, from deployment on edge devices to the tuning of large
language models. However, heterogeneity caused by differences be-
tween participants remains a fundamental challenge in application.
Existing work has largely focused on mitigating two major types
of heterogeneity: data and device heterogeneity. Yet as the use of
FL evolves, other types of heterogeneity become relevant. In this
work, we consider one such emerging heterogeneity challenge: the
preference-heterogeneous setting, where each participant has multi-
ple objectives, and heterogeneity is induced by different preferences
over these objectives. We propose FedPref, the first Personalised Fed-
erated Learning algorithm designed for this setting, and empirically
demonstrate that our approach yields significantly improved average
client performance and adaptability compared to other heterogeneity-
mitigating algorithms across different preference distributions.

1 Introduction
Many real-world problems inherently involve the consideration of
multiple objectives, from choosing a commuting route to work that
maximises speed, but also minimises financial cost and environ-
mental impact, to designing mechanical components for spacecraft
that both minimise weight and maximise durability. When attempt-
ing to model such problems for computation, capturing this com-
plexity is essential to producing meaningful solutions. As a result,
multi-objective optimisation (MOO) problems have been studied for
decades; more recently, the need for multi-objective approaches is
also increasingly being recognised in the machine learning commu-
nity. Recent research efforts include e.g. multi-objective variants of
Reinforcement Learning (MORL) and Neural Networks [8]. The ex-
tension of multi-objective learning (MOL) to distributed settings,
however, has received less attention to date. Federated Learning (FL),
in particular, is rapidly gaining relevance, enabling joint learning on
distributed platforms under constraints that would previously have

∗ Corresponding Author. Emails: {firstname.lastname}@uni.lu.

Figure 1: The federated learning paradigm. Clients train local models
(1); these are periodically transmitted to a server (2), where they are
aggregated into a global model (3), to be returned to the clients (4).

prevented collaboration. Adapting FL to MOL problems could al-
low the solving of more complex problems in distribution. In this
work, we present FedPref, a first adaptive algorithm designed to per-
form Federated Learning in a common multi-objective setting: multi-
ple distributed participants solving the same multi-objective learning
problem with mutually different preferences over these objectives.
The FL paradigm was developed to enable collaborative machine
learning in use cases where training data originates in distribution,
and the distributed datasets cannot be shared. Reasons precluding
the sharing of data involve concerns such as privacy, e.g. for mod-
els trained with personal preferences of smartphone users; confiden-
tiality, such as for medical datasets collected by different healthcare
providers; or simply technological constraints that limit the volume
of data that can be transmitted, such as on drones or small space-
craft, where a limited communication budget is available. In such
settings, FL allows participants to exploit the data available in distri-
bution without violating these data separation constraints. The fun-
damental idea – illustrated in Figure 1 – is to shift the model train-
ing to the distributed participants, with each participant training a
separate local model only on the locally available dataset. Only the
resulting local models are shared periodically with a central server
or directly with other participants, where multiple such models are
aggregated to enhance accuracy. Different aggregation strategies are
possible; a classical method is the weighted averaging of model
weights. This federated approach permits participants to implicitly
share information contained in their training data without exposing
the data itself. Federated Learning has been shown to work very
well in settings where participants’ knowledge and capabilities are
well-matched, yielding model accuracies matching those of models
trained on the equivalent centralised datasets. However, in other set-
tings FL is known to struggle – heterogeneity between clients, in
particular, remains a well-known major challenge in FL, complicat-
ing the aggregation of distributed models. Differences between par-

ticipants, such as imbalanced data distributions or different hardware
capabilities, lead to variances in the development of local models
during training. This causes difficulties in converging to an accu-
rate global model. State-of-the-art approaches for handling federated
heterogeneity have largely focused on solving the two variants men-
tioned previously (known in the literature as data and device hetero-
geneity, respectively); yet other challenging types of heterogeneity
can occur in real-world settings.

In this work, concerned with solving multi-objective learning
problems in federation, we identify preference heterogeneity as a new
challenge. This describes the setting where all participants solve the
same MOL problem, but assign different importance preferences to
each objective. The challenge is to differentiate between clients that
can benefit from joint model training, i.e. clients whose objective
functions are compatible at a given training stage, and clients whose
objectives conflict. We propose FedPref, a first adaptive algorithm
designed for such scenarios, where clients train under highly hetero-
geneous input. Our contributions can be summarised as follows:

• We describe and formalise a new type of heterogeneity problem
that occurs naturally in the federated setting.

• We propose FedPref, a new algorithm to efficiently perform per-
sonalised Federated Learning in this setting, adaptively aggregat-
ing similar models based on a modified version of the cosine
similarity metric. This algorithm does not require any knowledge
about client preferences to function.

• We demonstrate the successful performance of our algorithm com-
pared to several baselines on a range of MORL benchmark prob-
lems, and show that existing algorithms designed for data hetero-
geneity do not easily transfer to the preference-heterogeneous set-
ting without loss of performance.

• We provide extensive additional validation experiments, studying
the performance of the different components of our algorithm and
the impact of different parameter choices.

2 Background and related work

Federated Learning was first proposed by McMahan et al. [10] as
a way of training a single global model on a distributed dataset. In
recent years, however, another variant has emerged in Personalised
Federated Learning (PFL). Instead of training a global model that
generalises over all clients’ datasets, the aim of PFL is to find an in-
dividual – that is, personalised – model for each client, optimised
to best fit that client’s data specifically. With careful aggregation,
each client in a PFL system can use the collaboration with the others
to its own advantage. PFL is often deployed in heterogeneous set-
tings, where finding a generalised global model satisfying all clients
is much harder than obtaining individual solutions. In our work, we
also choose a personalised learning approach to allow each client to
find an individual fit for its personal multi-objective preferences.

Of the two recent works [15][6] that have addressed the federated
multi-objective setting, neither has deployed a PFL strategy. The for-
mer work allows for preference-heterogeneous clients, similar to our
work, but nevertheless trains only a single model across all clients,
obtaining a pareto-stationary solution. In our work, we train a per-
sonalised model for each client, permitting clients to find a model
tailored to their local preferences. This approach also allows us to
strategically group clients by the compatibility of their learned mod-
els, enabling a more effective exploration of the search space.
The latter work considers a scenario where clients do not have fixed
personalised preferences. In our work, we assume – arguably more

realistically – that each client does have preferences describing the
individual importance of each objective to the client, and that the
server has no knowledge of or control over these preferences.

Beyond these two works, no other works in the literature – to the
best of our knowledge – currently address this continuous objective-
heterogeneous setting. However, several related problems have been
studied previously: the problem of Multi-Task FL (MTFL) concerns
a setting where each client has a single task, and different clients
may have different tasks. This is an edge case of our problem, recov-
erable from the general formulation (where each task corresponds to
one objective) by assigning a preference of zero to all but one ob-
jective. Several works in the literature address MTFL[2][5]. Most of
these, e.g. [5], focus on attempting to cluster clients that solve the
same task, excluding others from aggregation. Our work, in contrast,
aims to adaptively aggregate clients with different tasks (preferences)
while their training process is compatible, and separated them only
if their training conflicts. In a similar sense, Cai et al. [2] propose
to perform weighted aggregation across clients with different single
tasks, based on a model similarity metric. However, their approach
includes only weighted aggregation, with no clustering mechanism
to permanently separate clients once they diverge.

Finally, our problem is also related to the other types of hetero-
geneity problems where the FL algorithm must account for differ-
ences between clients, such as data heterogeneity or hardware het-
erogeneity. Particularly in the case of data heterogeneity, client mod-
els also tend to develop in different directions, making the com-
parison with our problem setting an interesting one. Many varied
approaches have been proposed to address this problem [16]; the
ones most relevant here are those that do not rely on specific knowl-
edge of the heterogeneity. One of the first such approaches was the
FedProx framework [9], which relies on regularisation to encourage
model adaptation, discouraging clients from diverging too far from
the global model. Another approach proposes training personalised
models for each client by clustering clients recursively based on di-
rect knowledge about the underlying data distributions [17] or based
on model similarity [12]. The latter work, proposing the Clustered
FL [12] (CFL) algorithm, is of particular interest here. It deals with
settings where the underlying data distributions known to partici-
pants are not fully compatible, leading to conflicts in the training
of a joint model. To solve this, the idea of CFL is to train clients to-
gether in a classical federation until the global model converges to a
stationary point, allowing clients to learn from each other until mu-
tual conflicts stall the training process. Then clients are permanently
separated into clusters based on the similarity of model gradients in
the stationary point. Our multi-objective preference-heterogeneous
setting is related to the data-incongruity problem tackled by CFL,
in that we expect clients with preferences for conflicting objectives
to also produce incompatible models during training. However, we
expect the heterogeneity of clients to be more complex, given the
number of potential objectives and different preference distributions.
Therefore, we take inspiration from the clustering strategy of CFL
for our approach, but additionally introduce the idea of personalising
learning inside each cluster. Our aim is to allow a higher degree of
individual exploration for clients at an earlier stage in the training,
without cutting off cooperation earlier than necessary.

3 The FedPref algorithm
3.1 Problem formulation

We want to perform personalised Federated Learning across n
clients, each of which has a learning problem with the same m dis-

tinct objectives f1, · · · , fm. There is no general importance order as-
signed between objectives, but each client has a personal fixed pref-
erence weight vector across all objectives. Following a classical ap-
proach in multi-objective optimisation and multi-objective machine
learning, we map this multi-objective problem to a single-objective
problem in order to solve it, so that all clients learn a linear combina-
tion of these same objectives, with the preference weights assigned
as scalars. Then client i is learning to optimise the objective function

f i(θ) = f(w⃗i, θ) = w⃗if⃗(θ) =

m∑
j

wi
jfj(θ), (1)

where w⃗i = (wi
1, . . . , w

i
m)T is the preference distribution assigned

to this client. The preference distribution of each client is unknown to
all other participants, including the federated server – we note that we
can assume without loss of generality that all single-objective com-
ponents fj are known to all clients. Each client i trains a personalised
model θi using its personal preference weights.

3.2 Concept sketch and definitions

Figure 2: Flowchart of a single step of the FedPref algorithm.

The fundamental concept of the FedPref algorithm is to combine
a recursive clustering mechanism, similar to CFL [12], and an adap-
tive weighted aggregation scheme, both based on a model similarity
metric. The underlying idea behind this combination is to enable ef-
fective grouping and aggregation of clients whose preferences are
compatible during the learning process (provided by the clustering
component), while also maintaining the flexibility of training a per-
sonalised model for each client using weighted aggregation.

Figure 2 provides an illustration of the interaction between these
components, also detailed below. Initially, all participating clients are
grouped together in a single cluster. During every aggregation step,
a personalised model is computed for each client, using adaptive
weights computed based on mutual model similarity with all other
clients in the cluster. The mean model of all clients in the cluster
serves as an indicator of the success of the intra-cluster collaboration:
the mean model converges if either all clients converge, or if the gra-
dients of personalised client models start developing in conflicting
directions. In this case, we perform a recursive clustering step, split-
ting the current cluster in two based on the same model similarity
metric that is used for the weighted aggregation. The learning pro-
cess is then continued in the same manner inside the new clusters.
Before discussing the functionality of each component in detail in
the following sections, we here briefly discuss the modified similar-
ity metric that underpins both components. The similarity metric in
aggregation round t is computed on the basis of model updates

∆θi = θi − θ̄t−1
C , (2)

where θ̄t−1
C is the cluster-mean model obtained after the previous

aggregation step. Using these gradients, we define the similarity of

two models θi and θj on the basis of the standard cosine similarity:

cossim(u⃗, v⃗) =
⟨u⃗, v⃗⟩
∥u⃗∥ · ∥v⃗∥ . (3)

Here it suffices to consider the properties of the plain cosine similar-
ity – note that the metric sim(·, ·) used in our algorithm is a mod-
ification thereof, described in full detail in the appendix. The fun-
damental idea of both metrics is to describe the geometric relation
between two vectors, i.e. model gradients, in terms of a scalar in the
range of [−1,+1]. Two collinear vectors (parallel and pointing in the
same direction) have a cosine similarity of +1, two orthogonal vec-
tors have a score of 0, and two vectors that are parallel, but pointing
in opposite directions have a cosine similarity of −1. We consider
the gradient updates of two models following a local learning step
to be more compatible if their cosine similarity is higher, that is, the
gradients are pointing in more similar directions on the loss surface.

3.3 Weighted aggregation

The weighted aggregation – formalised in Algorithm 1 – is carried
out by the server for each separate cluster. Each weighted aggrega-
tion phase begins with computing the similarity matrix of the model
gradients of all clients contained in the cluster. Recall that the simi-
larity metric (defined in Equation 5) returns a value between −1 and
+1, representing the lowest and highest possible similarity, respec-
tively. These values are then clipped to a minimum lower similarity
bound smin – given to the algorithm as a parameter during initialisa-
tion – and subsequently normalised to the range [0, 1] (see line 5 in
Algorithm 1). This step enforces a minimum similarity required for
aggregation, excluding all clients whose similarity to another client is
lower than the given threshold from aggregation with that client. Fol-
lowing this precomputing of similarity values, the actual personalised
aggregation takes place: to compute the new personalised model for
each client, the similarity values, normalised once more so that the
sum of weights adds up to one, are used to compute the weighted
average of all client models – see lines 9 and 10 in Algorithm 1. This
aggregation is repeated for each client inside the cluster; the resulting
personalised models are returned to the respective clients.

Algorithm 1 Weighted aggregation

1: C list of c clients in cluster
2: W ← (0)c×c ▷ Init aggregation-weight matrix
3: for i ∈ C do
4: for j ∈ C do
5: wij ← (sim(∆θi,∆θj)− smin)/(1− smin)
6: end for
7: end for
8: for i ∈ C do
9: ŵi ← wi/|wi|

10: θi ←
∑

c∈C ŵicθc
11: end for
12: return (θc|c ∈ C)

3.4 Recursive clustering

The clustering procedure is performed whenever a cluster is found
to have converged during an aggregation round. The exact conver-
gence criterion is discussed in Section 3.5. The purpose of this pro-
cedure is to separate the clients contained in the cluster into two new
sub-clusters in such a way that clients whose models are developing
similarly are grouped together to continue learning from each other,

and clients that are no longer compatible are separated. This biparti-
tioning is based on the same similarity metric as the weighted aggre-
gation. In principle, different clustering algorithms could be suited
to performing the clustering itself; in this work, we choose to use
spectral clustering [3], as it tends to produce well-balanced clusters,
performs well for low numbers of clusters, and an implementation
is readily available in common libraries. Clustering is performed no
more than once per cluster per aggregation round.

Algorithm 2 Clustering

Require: ∥∆θ̄C∥ ≤ ε ▷ Cluster-avg model change ≤ ε
1: C list of c clients in cluster
2: S ← (0)c×c ▷ Init similarity matrix
3: for i ∈ C do
4: for j ∈ C do
5: ∆θi,∆θj ← θ̄t−1

C − θi, θ̄
t−1
C − θj

6: Sij ← sim(∆θi,∆θj)
7: end for
8: end for
9: C1, C2 ← SpectralClustering(C,S, 2) ▷ Bipartition C

10: return C1, C2

3.5 Full algorithm

The complete FedPref algorithm combines the weighted aggregation
and clustering components, as detailed in Algorithm 3 and concep-
tually in Figure 2. In every round, all local models are trained for a
fixed number of steps. Once all models for a given cluster C have
been reported to the server, the aggregation phase begins. As a first
step, the clustering criterion is checked: the difference of the cluster-
mean model ∆θ̄C of the most recent local updates to the cluster-
mean model θ̄t−1

C following the latest aggregation round is computed
(see lines 7 − 8 in Algorithm 3). If the magnitude of this change is
less than a given convergence threshold ϵ, we assume that the mod-
els of clients inside the cluster are diverging. We therefore trigger
the clustering process to bipartition the current cluster C into two
new clusters C1 and C2. We then carry out weighted aggregation
according to Algorithm 1 on the new clusters, before updating the
server-side record of current clusters.
If the clustering criterion is not met, aggregation continues in the
preexisting cluster: weighted aggregation is carried out in this clus-
ter, and client-membership of this cluster is recorded unchanged.
In one full server-side aggregation step, this procedure is executed for
every cluster, with personal aggregated models returned to the clients
of each cluster after aggregation has concluded. The algorithm termi-
nates after T such aggregation rounds. Note that even if clients are
still part of a larger cluster after T − 1 aggregation rounds, no ag-
gregation is performed after the final local training round, to allow
clients a degree of local fine-tuning (see line 23 in the algorithm).

4 Evaluation
4.1 Implementation and setup

Faced with a lack of standard benchmarking problems for feder-
ated multi-objective learning, we choose to use a number of multi-
objective reinforcement learning (MORL) environments as our vali-
dation problems. These represent an intuitive class of multi-objective
problems with varying characteristics and complexity, are extensions
of classical RL baselines, and are implemented in a well-documented
set of Python libraries [4] that aids reproducibility. We run our exper-
iments on three such MORL environments: Deep-Sea Treasure [13]

Algorithm 3 FedPref-Server

1: C ← {[1, . . . , n]} ▷ Initial cluster
2: θ01, . . . , θ

0
n ← Initialise client models

3: for t ∈ 1, . . . , T − 1 do
4: θ′1, . . . , θ

′
n ← Train local models

5: for C ∈ C do
6: Ctemp ← {}
7: θ̄t−1

C ← 1/|C|
∑

c∈C θt−1
c

8: ∆θ̄C ← θ̄t−1
C − 1/|C|

∑
c∈C θ′c

9: if ∥∆θ̄C∥ ≤ ε then ▷ Cluster converged
10: C1, C2 ← Clustering(θ̄t−1

C , [θ′c|c ∈ C])
11: Θ′

C1
,Θ′

C2
← {θtc|c ∈ C1}, {θtc|c ∈ C2}

12: Θt
C1
←WeightedAggregation(θ̄t−1

C1
,Θ′

C1
)

13: Θt
C2
←WeightedAggregation(θ̄t−1

C2
,Θ′

C2
)

14: Ctemp ← Ctemp ∪ {C1, C2}
15: else
16: Θ′

C ← {θ′c|c ∈ C}
17: Θt

C ←WeightedAggregation(θ̄t−1
C ,Θ′

C)
18: Ctemp ← Ctemp ∪ {C}
19: end if
20: end for
21: C ← Ctemp

22: end for
23: θ′1, . . . , θ

′
n ← Train local models

(DST), Deterministic Minecart [1] (DMC) and the multi-objective
extension (MO-LL) of OpenAI’s Lunar Lander gym environment,
using a classical DQN algorithm [11] to solve the scalarised RL prob-
lem on each client. The DQN algorithm is chosen based on its prior
adaptation for the federated setting [7].

These environments represent multi-objective problems with dif-
ferent characteristics: the DST environment is relatively small and
has a finite number of optimal solutions. The MO-LL environment
is more complex and has a large number of optimal or near-optimal
solutions closely aligned in the solution space. Conversely, the DMC
environment has a sparse reward space, leading to a very low num-
ber of optimal solutions, which are mutually distant in the solution
space. Fig. 3 presents a composite of the results obtained for different
objectives across the three environments, for an illustration of these
distinctions. These differences imply different challenges for feder-
ated aggregation, allowing us to analyse the suitability of FedPref
to each type of problem. We measure the success of each algorithm
as the mean reward obtained across all federated clients, with each
client’s reward scalarised according to its preference weights. The
results have been made available on an interactive online platform1;
the code of our implementation is available in a git repository2.

Figure 3: Sample illustrations of solution spaces of different envi-
ronments, separated by objectives. Left to right: Set of all solutions
obtained experimentally for MO-LL, DMC and DST environments.
For MO-LL and DMC, results have dimension 4 and 3, respectively,
and are here represented as projections into a coordinate plane.

1https://wandb.ai/fed-mo/mofl-d/reports/Validating-FedPref--Vmlldzo5
MTA1Mjg5?accessToken=7b1jrext64hye560zwq93uefgf1k3zfd2moqn290ys1
sml2pbqfo3po5yuxv4fk9

2https://gitlab.com/maria.hartmann/FedPref

4.2 Comparison to baselines

4.2.1 Experimental setup

We compare our FedPref algorithm both to the classical baselines
and to several state-of-the-art algorithms developed to deal with
other types of heterogeneity. As baselines, we run the same local
learning algorithms with no communication between clients (no-
communication) and the classical federated averaging (FedAvg) al-
gorithm, averaging the models of all clients while disregarding het-
erogeneity. To the best of our knowledge, no previous algorithms
targeting this type of heterogeneity have been proposed in the liter-
ature; we therefore validate our approach against three algorithms
from related fields that appear most relevant to our setting: Fed-
Prox [9], Many-Task Federated Learning [2] (MaTFL) and Clustered
Federated Learning [12] (CFL). FedProx is a classical approach to
the heterogeneity problem, commonly used as a baseline in data-
heterogeneous settings. The underlying strategy appears intuitively
to have the potential to transfer to the preference-heterogeneous set-
ting, so we choose to retain this baseline. The MaTFL and CFL al-
gorithms are chosen for the similarity of their approaches with the
weighted aggregation and the clustering component of our algorithm,
respectively; they also represent the two fields of Multi-Task FL and
data-heterogeneous FL that we identified earlier in this work as most
closely related to our problem setting. We tune the hyperparameters
for all algorithms via an initial grid search on a set of preferences
sampled from a Dirichlet distribution. For each algorithm and envi-
ronment, we select the best-performing hyperparameter configura-
tion from this search. The details of this parameter search and the
local configurations of clients for each RL problem are reported in
the supplementary material. Following the parameter tuning, we run
all algorithms with client preference weights generated according to
three different distributions: sampled from a Dirichlet distribution,
sampled from a Gaussian distribution or weights generated to be
equally spaced in the weight simplex.

4.2.2 Analysis

We report the numerical results obtained for all algorithms and dis-
tributions in Table 1. In the remainder of this section, we will dis-
cuss and contrast these results separately by preference distribution,
from the most “extreme” preference differences between clients – the
equidistant distribution – over the Dirichlet distribution to the Gaus-
sian distribution, where client preferences are most similar.
Equidistant preferences. Under the equidistant distribution of pref-
erence weights across clients, we observe that FedPref outperforms
all other algorithms quite significantly on two out of three environ-
ments. For the MO-LL environment, clients participating in FedPref
obtain a mean scalarised reward of 29.470, far ahead of the second-
highest result of 18.489 on the same environment. Indeed, the lat-
ter result is not accomplished by any federated algorithm, but by the
baseline of non-communicating clients, with the remaining federated
algorithms achieving much lower scores down to the lowest mean
result of −94.059, returned by the CFL algorithm. Results for DST
follow a similar pattern, while for the DMC environment no feder-
ated algorithm outperforms the result of the non-federated baseline.
These results underscore the difficulty of this distribution – equidis-
tant preference weights likely represent the most “extreme” scenario
among our experiments, where individual client objectives have the
greatest mutual differences. In general, we would expect this to also
map to greater differences in the models that match the preferences
of each client, resulting in an advantage for those algorithms training

personalised models. Our results, reported in rows 4-6 of Table 1,
appear to support this, as both FedProx and FedAvg perform notably
worse in this scenario than for the other two types of preference dis-
tributions. This pattern persists across all experimental environments.
Somewhat more surprisingly, we also observe a poor performance
by CFL for many environments in this setting - further investiga-
tion shows that the greedy clustering algorithm defined for CFL [12]
tends to yield highly unbalanced clusters in our experiments. As clus-
ters in CFL train a single global model, this leads to less personalised
models – a disadvantage for this type of preference distribution.
Indeed, in this scenario it becomes particularly important for any per-
sonalised algorithm to accurately judge the compatibility of models,
and to separate non-compatible models. This appears to be a strength
of our algorithm: FedPref not only outperforms all others by a signif-
icant margin in two out of three environments; in the third environ-
ment (DMC) none of the algorithms tested here perform better than
the non-federated baseline. It appears likely that the high sparsity of
the reward space, combined with the greater difference in client ob-
jectives, makes it difficult to group clients for aggregation.
Uniformly-sampled preferences. Under the Dirichlet distribution,
our results, reported in row 1-3 of Table 1, show FedPref outper-
forming all other algorithms on all three experimental environments.
Compared to the results obtained under the equidistant preference
distribution, some of the gains of the FedPref algorithm over those
compared, though still existent, are less drastic, particularly on the
dense solution space of the MO-LL environment: In this case, e.g. the
FedProx algorithm yields a mean client reward of 31.195, relatively
close to the top result of 32.220 achieved by the FedPref algo-
rithm. However, the difference remains larger for the DST environ-
ment, likely due to its discrete solution set: Here, FedPref obtains
a mean scalarised client reward of 4.409, still followed by the no-
communication baseline with a mean reward of −0.426. The rank-
ing of algorithmic results is similar on the DMC environment, though
less decisive. It appears that the lower density of (optimal) solutions
available in the latter two environments, combined with the interme-
diate objective heterogeneity of this setting, continues to present a
difficult challenge to the federated algorithms from the literature.
Gaussian-sampled preferences. Finally, in the setting where weight
preferences are drawn from a Gaussian distribution, different algo-
rithms achieve the top scores for each environment (see results in
row 7-9 of Table 1): in the MO-LL environment, the CFL algorithm
obtains a mean scalarised client reward of 37.726, slightly higher
than the second-highest score of 36.434, returned by the FedPref al-
gorithm. On the DMC environment, the FedAvg algorithm gives the
highest score of −2.466, again followed by the FedPref algorithm
with a score of −2.527. Results on the DST environment remain
dominated by the FedPref algorithm, with no other federated algo-
rithm outperforming the non-federated baseline.
Under this distribution, clients are more likely to have more simi-
lar preferences, potentially supporting more similar models. In this
case, plain (equally-weighted) aggregation appears to do well, with
the CFL algorithm delivering the best performance on the MO-LL
environment. The two non-PFL algorithms also perform notably bet-
ter under this preference distribution than in the other two settings - in
fact, in this case the plain FedAvg algorithm outperforms all others in
the DMC environment. While this result may be owing to the sparse
solution space of the problem, with the federated clients jointly con-
verging on a single local optimum, it remains part of a wider trend.
Conclusion. Following the detailed analysis of results by preference
distribution, we conclude with a number of general observations.
Firstly, FedPref yields the greatest improvement over the compared

Figure 4: Mean scalarised reward obtained by different algorithms on the MO-LL environment, compared across preference distributions.

approaches in settings with medium-to-high preference heterogene-
ity – represented here by the Dirichlet and equidistant distributions
– and on problems with medium-to-high solution density, such as
the MO-LL and DST environments in our experiments. Secondly,
we note that whenever our algorithm does not deliver the best per-
formance, it is outperformed by only one other, and never twice by
the same algorithm. FedPref is also notably more adaptable to differ-
ent types of preference distributions than the other algorithms com-
pared here. This indicates that FedPref is a good overall choice in
the general case, where the distribution of preference weights of the
characteristics of the learning problem may be unknown.

4.3 Ablation study

We perform an ablation study of the FedPref algorithm, comparing
its performance with that of its individual components, i.e. perform-
ing only weighted aggregation or only the clustering strategy, respec-
tively. This and the following validation experiments are limited to
preferences generated from a Dirichlet distribution, representing the
“medium-heterogeneous” setting in our comprehensive experiments
in the previous section. The results, reported in Table 2, show two dif-
ferent outcomes for the three different types of problems we study.
Results. For the DMC environment with its very sparse reward
space, we observe that both the clustering and the weighted-
aggregation component perform better individually than combined
– the clustering-only component achieves the highest average
scalarised client reward of −1.526, whereas the combined compo-
nents yield a mean reward of−2.423. In this case, it is likely that the
individual clients’ preferences ultimately lead to very different op-
timal models, with less benefit obtained from cooperation between
different models. This hypothesis is also supported when compar-
ing the results for the FedProx and FedAvg algorithm, discussed in
Section 4.2.2, Table 1, for this environment. The approach behind
these two algorithms forces a high level of collaboration between
the clients, and does not lead to high overall results for this envi-
ronment when preferences are sufficiently different. Of the two indi-
vidual components, the clustering component likely succeeds more
quickly in separating very different models, with the cluster-mean
model converging more definitively. The weighted-aggregation com-
ponent, achieving here the median result of −2.204, might allow for
a more extreme divergence more quickly, leading to more effective
similarity weight assignment than under the combined components.
Nevertheless, it should be noted that all three variants succeed in out-
performing the compared approaches under the Dirichlet distribution
– see Table 1. In contrast, we observe significantly improved results
for the combined components over each component individually for
both the MO-LL and DST environments. We note that in both cases,
the weighted aggregation performs quite badly in isolation – yield-
ing mean scalarised rewards of 17.697 and −31.243, respectively
– but in combination with the clustering strategy leads to a notable

improvement over both isolated strategies. For the MO-LL environ-
ment, this is roughly an 82% increase over the weighted aggregation
component, and an 18% increase over the clustering component; for
the DST environment, the improvements are similarly notable.
In both of these cases, the poor performance of the weighted aggre-
gation component in isolation is likely related to the choice of a low
minimum-similarity threshold for both environments - without the
clustering mechanism to separate clients by similarity, this could lead
to the forced aggregation of incompatible clients. This effect might
be less pronounced for the DMC environment, both because clients
in this environment appear to separate very quickly into high mutual
dissimilarity, and because the initial hyperparameter search for this
environment led to a higher minimum-similarity threshold in the first
place, additionally supporting the quick separation of clients.

4.4 Impact of similarity bound

Figure 5: Impact of the min-similarity threshold on mean client re-
ward. Left to right: results for MO-LL, DMC and DST environments.

We study the performance impact of a hyperparameter that is inte-
gral to our algorithm: the lower similarity bound used in computing
aggregation weights. The full numerical results for this study may be
found in the supplementary material, along with a further sensitivity
analysis of our similarity metric. The results for the min-similarity
threshold (see Figure 5) show commonalities across all three environ-
ments, suggesting that thresholds lower than 0 are remarkably benefi-
cial to the learning outcome: the relative improvement in mean client
reward between a threshold of 0 and the optimal discovered value
ranges from 21.1% for the DMC environment with threshold −1 to
a full 296.8% improvement for the DST environment with threshold
−0.6. Though counter-intuitive at first glance, given the geometric
interpretation of cosine similarity, this outcome is quite reasonable
in the context of our algorithm. Firstly, we note that the purpose of
our algorithm’s clustering strategy is to cluster those clients together
that can benefit from collaboration. Improved results for a lower min-
similarity threshold indicate that this grouping is successful, as even
relatively dissimilar clients inside the same cluster improve with col-
laboration. Secondly, the fact that clients train personalised, i.e. dif-
ferent, models means that some dissimilarity is induced by definition
of the metric, through the choice of the cluster-mean model as a ref-
erence point in computing the cosine similarity.

Table 1: Experimental results comparing our algorithm to MaTFL, CFL, FedProx, FedAvg and individual learning without cooperation.
No comm. FedAvg FedProx CFL MaTFL FedPref (ours)

Dirichlet
MO-Lunar Lander 14.318 σ13.34 30.516 σ14.74 31.195 σ16.90 31.177 σ17.85 7.817 σ9.89 32.220 σ11.34
Det. Minecart −2.524 σ0.86 −3.203 σ3.40 −3.345 σ3.57 −2.759 σ0.87 −4.388 σ2.17 -2.423 σ1.63
Deep-Sea Treasure −0.426 σ1.81 −16.502 σ24.69 −11.046 σ22.14 −12.895 σ21.77 −6.325 σ3.63 4.409 σ1.68

Equidistant
MO-Lunar Lander 18.489 σ10.49 −55.641 σ46.91 −73.980 σ45.33 −94.059 σ30.82 11.992 σ6.53 29.470 σ3.50
Det. Minecart -1.696 σ1.52 −6.771 σ0.25 −6.753 σ0.22 −2.736 σ0.48 −4.033 σ1.19 −2.213 σ1.71
Deep-Sea Treasure 0.685 σ1.89 −17.871 σ26.23 −23.230 σ26.77 −34.623 σ23.51 −6.159 σ2.76 2.780 σ2.54

Gaussian
MO-Lunar Lander 15.326 σ13.42 31.532 σ13.12 32.745 σ12.99 37.726 σ11.49 6.480 σ9.41 36.434 σ7.34
Det. Minecart −3.607 σ2.22 -2.466 σ3.27 −2.941 σ3.08 −4.004 σ1.80 −5.038 σ1.12 −2.527 σ1.78
Deep-Sea Treasure 1.133 σ0.93 −13.317 σ25.63 −2.066 σ16.01 −24.819 σ27.55 −6.243 σ3.35 2.868 σ2.65

Table 2: Experimental results comparing the individual and combined
components of the FedPref algorithm.

MO-LL DMC DST

Clustering only 27.265 σ13.9 -1.526 σ0.8 0.9475 σ3.8
Weighted agg. only 17.697 σ9.8 −2.204 σ0.9 −31.243 σ8.5
FedPref 32.22 σ12.0 −2.423 σ1.7 4.409 σ1.8

4.5 Validation of clustering strategy

We validate the clustering strategy on all three environments by run-
ning FedPref on artificially constructed configurations where mul-
tiple clients share the same preferences. We construct two types of
configurations: one where preferences are distributed among equal
numbers of clients (4 distinct preference weights, each held by 5
clients), and one where the number of clients varies by preference
(4 distinct preference weights, held by 2, 3, 6 and 9 clients, respec-
tively). We observe how well the clustering algorithm groups similar
clients and how the similarity between clients develops during train-
ing. Due to scope constraints, we present only one such configuration
here; the remaining results are shown in the supplementary material.

Figure 6 shows client similarities at selected steps of the training
process on the MO-LL environment under the balanced preference
distribution. Note that for ease of visualisation, clients with the same
preferences are grouped together by index. We see in the visualisa-
tion that varying preference similarities are already reflected in the
model similarity computed by our metric. At the earliest visualised
stage (after five aggregation steps; left-most image in Fig. 6), all
clients are still grouped together in a single cluster. Nevertheless, the
weighted aggregation strategy gives individual models the freedom
to develop separately, yet also appears to be successful in encourag-
ing the weighted aggregation of clients with the same objectives.
In the second image, at an intermediate stage of the training process,
a split into multiple clusters has occurred. The grouping of clients
with the same preferences is preserved across experimental runs, but
multiple groups of such clients continue to collaborate at this train-
ing stage, with different groups clustered together in different experi-
mental runs. In the instance visualised here, clients 1−5 and 11−15
are all contained in the same cluster. In the final image, close to the
end of the training phase, we observe that the similarity of the models
obtained by clients with the same preferences is very high, while the
similarity to other models appears lower than before. This indicates

Figure 6: Mutual client similarity at different stages during a single
experimental run on the MO-LL environment. Left to right: client
similarities after aggregation round 5, 14 and 24 of 28, respectively.

that these clients have been separated into individual clusters, and
that the personalised models within these clusters are converging.

5 Conclusion, limitations, and outlook

In this work, we have discussed an approach for solving multi-
objective learning problems in a federation of distributed partici-
pants. In particular, we have identified preference heterogeneity, a
novel type of heterogeneity problem that arises naturally in many
real-world scenarios, as a key challenge to be overcome by feder-
ated algorithms. This occurs when clients solve multi-objective prob-
lems, with each client assigning different preferences to each objec-
tive. To tackle this problem, we have proposed FedPref, a new al-
gorithm to perform Federated Learning in this setting. FedPref is
based on a combination of recursive clustering and weighted ag-
gregation, both using model similarity. This algorithm preserves the
privacy of clients with respect to training data and preferences. We
have validated FedPref on multiple varied problems and preference
distributions, comparing it to classical benchmarks as well as other
heterogeneity-mitigating algorithms from the state of the art. We
have shown that our algorithm outperforms the alternatives in many
cases, and represents a reliable choice in all others. Further experi-
ments were carried out to study the characteristics of the algorithm.

As this work presents an initial solution tailored to the objective-
heterogeneous setting, several challenges inherent to the federated
setting remain to be addressed in future work. This includes e.g. sce-
narios dealing with additional types of heterogeneity, such as data or
hardware heterogeneity, combined with the preference heterogene-
ity discussed here. In principle, we expect that the model similarity-
based design of our algorithm could adapt without change to a setting
that includes data heterogeneity; solving device heterogeneity might
require the integration of additional strategies dedicated to this pur-
pose. Such strategies already exist in the literature; their integration
into the cluster-aggregation step of FedPref appears quite feasible.
Finally, we note that, beyond the client-level performance analysis
we have carried out here, a system-level analysis of the solutions ob-
tained by different algorithms would be of interest for this setting. In
multi-objective domains, the ability to find a diverse array of trade-
off solutions for different objective preferences is often important;
this likely extends to the federated setting.

Acknowledgements

This work is partially funded by the joint research programme
UL/SnT–ILNAS on Technical Standardisation for Trustworthy ICT,
Aerospace, and Construction. The experiments presented in this pa-
per were carried out using the HPC facilities of the University of
Luxembourg [14] – see https://hpc.uni.lu.

References
[1] A. Abels, D. M. Roijers, T. Lenaerts, A. Nowé, and D. Steckelmacher.

Dynamic weights in multi-objective deep reinforcement learning, 2018.
URL https://arxiv.org/abs/1809.07803.

[2] R. Cai, X. Chen, S. Liu, J. Srinivasa, M. Lee, R. Kompella, and
Z. Wang. Many-task federated learning: A new problem setting and
a simple baseline. In 2023 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW). IEEE, June 2023.
doi: 10.1109/cvprw59228.2023.00532. URL http://dx.doi.org/10.1109/
CVPRW59228.2023.00532.

[3] A. Damle, V. Minden, and L. Ying. Simple, direct and efficient multi-
way spectral clustering. Information and Inference: A Journal of the
IMA, 8(1):181–203, 06 2018. ISSN 2049-8772. doi: 10.1093/imaiai/
iay008. URL https://doi.org/10.1093/imaiai/iay008.

[4] F. Felten, L. N. Alegre, A. Nowé, A. L. C. Bazzan, E. G. Talbi,
G. Danoy, and B. C. da. Silva. A toolkit for reliable benchmarking
and research in multi-objective reinforcement learning. In Proceed-
ings of the 37th Conference on Neural Information Processing Systems
(NeurIPS 2023), 2023.

[5] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran. An efficient frame-
work for clustered federated learning. In H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural In-
formation Processing Systems, volume 33, pages 19586–19597. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/e32cc80bf07915058ce90722ee17bb71-Paper.pdf.

[6] M. Hartmann, G. Danoy, M. Alswaitti, and P. Bouvry. MOFL/d: A
federated multi-objective learning framework with decomposition. In
International Workshop on Federated Learning in the Age of Foun-
dation Models in Conjunction with NeurIPS 2023, 2023. URL https:
//openreview.net/forum?id=Pj6BPHZy56.

[7] H. Jin, Y. Peng, W. Yang, S. Wang, and Z. Zhang. Federated reinforce-
ment learning with environment heterogeneity. In Proceedings of The
25th International Conference on Artificial Intelligence and Statistics,
pages 18–37. PMLR, 2022. URL https://proceedings.mlr.press/v151/
jin22a.html. ISSN: 2640-3498.

[8] S. Li, F. Wan, H. Shu, T. Jiang, D. Zhao, and J. Zeng. Monn: A multi-
objective neural network for predicting compound-protein interactions
and affinities. Cell Systems, 10(4):308–322.e11, Apr. 2020. ISSN 2405-
4712. doi: 10.1016/j.cels.2020.03.002. URL http://dx.doi.org/10.1016/
j.cels.2020.03.002.

[9] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith.
Federated optimization in heterogeneous networks, 2018. URL https:
//arxiv.org/abs/1812.06127.

[10] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Ar-
cas. Communication-Efficient Learning of Deep Networks from De-
centralized Data. In A. Singh and J. Zhu, editors, Proceedings of the
20th International Conference on Artificial Intelligence and Statistics,
volume 54 of Proceedings of Machine Learning Research, pages 1273–
1282. PMLR, 20–22 Apr 2017. URL https://proceedings.mlr.press/v54/
mcmahan17a.html.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Ku-
maran, D. Wierstra, S. Legg, and D. Hassabis. Human-level con-
trol through deep reinforcement learning. Nature, 518(7540):529–533,
Feb. 2015. ISSN 1476-4687. doi: 10.1038/nature14236. URL http:
//dx.doi.org/10.1038/nature14236.

[12] F. Sattler, K.-R. Müller, and W. Samek. Clustered federated learning:
Model-agnostic distributed multitask optimization under privacy con-
straints. IEEE Transactions on Neural Networks and Learning Systems,
32:3710–3722, 2019. URL https://api.semanticscholar.org/CorpusID:
203736521.

[13] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker. Em-
pirical evaluation methods for multiobjective reinforcement learning
algorithms. Machine Learning, 84(1):51–80, 2011. ISSN 1573-
0565. doi: 10.1007/s10994-010-5232-5. URL https://doi.org/10.1007/
s10994-010-5232-5.

[14] S. Varrette, H. Cartiaux, S. Peter, E. Kieffer, T. Valette, and A. Olloh.
Management of an Academic HPC & Research Computing Facility:
The ULHPC Experience 2.0. In Proc. of the 6th ACM High Performance
Computing and Cluster Technologies Conf. (HPCCT 2022), Fuzhou,
China, 2022. Association for Computing Machinery (ACM). ISBN 978-
1-4503-9664-6.

[15] H. Yang, Z. Liu, J. Liu, C. Dong, and M. Momma. Federated multi-
objective learning. In A. Oh, T. Neumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, editors, Advances in Neural Information Pro-
cessing Systems, volume 36, pages 39602–39625. Curran Associates,

Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/7cb2c2a8d35576c00078b6591ec26a7d-Paper-Conference.pdf.

[16] M. Ye, X. Fang, B. Du, P. C. Yuen, and D. Tao. Heterogeneous federated
learning: State-of-the-art and research challenges. ACM Comput. Surv.,
56(3), oct 2023. ISSN 0360-0300. doi: 10.1145/3625558. URL https:
//doi.org/10.1145/3625558.

[17] Y. Yeganeh, A. Farshad, J. Boschmann, R. Gaus, M. Frantzen, and
N. Navab. FedAP: Adaptive Personalization in Federated Learning
for Non-IID Data, page 17–27. Springer Nature Switzerland, 2022.
ISBN 9783031185236. doi: 10.1007/978-3-031-18523-6_2. URL
http://dx.doi.org/10.1007/978-3-031-18523-6_2.

6 Appendix

This document contains supplementary material for the paper enti-
tled Introducing FedPref: Federated Learning Across Heterogeneous
Preferences. Section 6.2 contains detailed information on the set-up
and configuration of experiments presented in the main paper, in-
cluding the design and results of the hyperparameter search carried
out for all algorithms; parameters used for the local training of client
models, and computing resources required for the making of this pa-
per. Section 6.3 shows additional results for the validation experi-
ments that exceeded the scope of the main paper.

6.1 Details of the algorithm

6.1.1 Modified similarity metric

We formally introduce the modified similarity metric that underpins
both components. The similarity metric in aggregation round t is
computed on the basis of model updates

∆θi = θi − θ̄t−1
C , (4)

where θ̄t−1
C is the cluster-mean model obtained after the previous ag-

gregation step. Using these gradients, we define the similarity metric
sim(·, ·) of two models θi and θj as

sim(∆θi,∆θj) =
1

L

L∑
ℓ

cossim(topR(∆θℓi), topR(∆θℓj)), (5)

where ∆θℓi is the ℓ-th layer of the neural network update ∆θi and
L is the total number of layers per model. The topR operator is a
variant of topk, where k is determined by the dimension of the input
vector and a ratio R ∈ (0, 1]. TopR maps a vector v⃗ to a vector of
the same dimension where the top k = ⌈dim(v⃗) · R⌉ elements of
v⃗ (in absolute terms) are retained and the remaining elements set to
zero. So for topR(v⃗) = u⃗, we have

ui =

{
vi, if |vi| in top ⌈R · dim(v⃗)⌉ absolute elements of v⃗.
0, otherwise.

(6)
The cosine similarity cossim(·, ·) is defined in the standard way:

cossim(u⃗, v⃗) =
⟨u⃗, v⃗⟩
∥u⃗∥ · ∥v⃗∥ . (7)

We choose to use this modified metric instead of the more common
direct applications of cosine similarity for two main reasons:

• We hope to mitigate the “curse of dimensionality” that makes this
metric increasingly meaningless for larger vector dimensions.

• Selecting the subset of the largest weights for each layer allows us
to compare the most impactful, or “important” aspects of the mod-
els. This could lead to more meaningful decisions about which
models to aggregate together.

Our evaluation experiments contained in this appendix show that,
compared to the pure cosine similarity metric without weight selec-
tion, the use of this metric does indeed lead to improved results in
our validation experiments.

6.2 Details of experiment configurations

6.2.1 Hyperparameter tuning

We perform an initial hyperparameter search for all algorithms and
environments, with all evaluated parameter values listed in Table 4.
Each configuration was run five times on 20 clients and five differ-
ent randomly-generated preference distributions. The five preference
distributions remained fixed across all hyperparameter configurations
to promote the comparability of results. The metric used to assess
performance was the mean linearised reward obtained by the clients
using their personalised preference weights. The parameter values
selected as a result of the hyperparameter tuning are given in Ta-
ble 3. These hyperparameters remain fixed to the same selection in
our supplementary validation experiments, i.e. the ablation study and
sensitivity analyses.

6.2.2 MORL environment parameters

Where available, the hyperparameters for the three MORL environ-
ments used in our experiments were obtained from published bench-
mark configurations. Where no such configurations were available,
they were obtained by manual tuning. All modified parameters are
reported below, in Tables 5, 6 and 7. Parameters that are not listed
can be assumed to be set to the default setting, as implemented in the
DQN algorithm of the stable-baselines3 package.

6.2.3 Computing resources

The number of experiments presented in this paper amounts to 2025
individual experimental runs. This corresponds to a total runtime of
approximately 2280 hours on a single node of the computing cluster
available to us.

6.3 Supplementary experimental results

In this section, we include supplementary numerical results and plots
that exceeded the scope of the main paper.

6.3.1 Main validation experiments

6.3.2 Impact of topR parameter and similarity bound

This section lists numerical experimental results for the parameter
sensitivity analysis carried out in the main paper; these same results
are presented there in visual form, with some numbers quoted. We
refer the reader to the relevant section in the main paper for the anal-
ysis and discussion of these results. This section also contains an
additional analysis and discussion of the impact of the topR parame-
ter, used in computing the client similarity metric.
Table 9 contains the results for the sensitivity analysis of the topR
parameter; Table 8 shows the results for the analysis of the minimum
similarity threshold in aggregation. All experiments were carried out
with 10 different random seeds, for 20 federated clients per run, on
preference weights drawn from a Dirichlet distribution.

The parameter R describes the proportion of each model layer
to be used by our metric in calculating similarity (see Equations 6
and 5, respectively, for the definitions of the topR operator and our
similarity metric). The minimum similarity bound is used during the
weighted aggregation step to include only models exceeding a given
similarity value in the aggregation.
Results for the topR parameter, shown in Figure 8, indicate that this

Table 3: Complete list of parameter configurations tested during hyperparameter tuning.
MO-Lunar Lander Det. Minecart Deep-Sea Treasure Comment

No comm. - - - - No federated parameters.
FedAvg Number local iterations (2, 5, 10) · 103 (2, 5, 10) · 103 (5, 10, 15) · 102

FedProx Number local iterations 2000, 5000, 10000 2000, 5000, 10000 500, 1000, 1500
Proximal term µ 0.01, 0.1, 1 0.01, 0.1, 1 0.01, 0.1, 1 Based on recommendations in [9]

CFL

Number local iterations 2000, 5000, 10000 2000, 5000, 10000 500, 1000, 1500
Clustering threshold 2.5, 5, 7.5 2, 3, 5 2.5, 5, 7.5 Based on max. observed gradient magnitudea

Patience 1, 2 1, 2 1, 2 Rounds below threshold before clustering
triggeredb

MaTFL Number local iterations 2000, 5000, 10000 2000, 5000, 10000 500, 1000, 1500
Number voting clients k 5, 8, 10 5, 8, 10 5, 8, 10 Adequate range according to [2]

Ours

Number local iterations 2000, 5000, 10000 2000, 5000, 10000 500, 1000, 1500
Clustering threshold 2.5, 5, 7.5 2, 3, 5 2.5, 5, 7.5 Same as for CFL
Patience 1, 2 1, 2 1, 2 Same as for CFL
Minimum similarity −1, 0 −1, 0 −1, 0 Used in computing aggregation weightsc

a As suggested in [12].
b Introduced by us to handle slow initial gradient ramp-up.
c See Section 3.3 in the main paper for explanation.

Table 4: Parameter configurations selected for each algorithm following hyperparameter tuning.
MO-Lunar Lander Det. Minecart Deep-Sea Treasure

No comm. - - - -
FedAvg Number local iterations 5000 5000 500

FedProx Number local iterations 5000 5000 500
Proximal term µ 1 1 1

CFL
Number local iterations 10000 2000 1000
Clustering threshold 5 3 5
Patience 2 2 2

MaTFL Number local iterations 2000 5000 1000
Number voting clients k 10 10 10

Ours

Number local iterations 5000 5000 500
Clustering threshold 5 3 5
Patience 1 2 2
Minimum similarity −1 0 −1

Parameter name Value
env mo-lunar-lander-v2
policy MlpPolicy
learning_rate 0.00063
batch_size 64
buffer_size 50000
learning_starts 0
gamma 0.99
target_update_interval 250
train_freq 4
gradient_steps −1
exploration_fraction 0.12
exploration_final_eps 0.1
net_arch [256, 256]

Table 5: Set of parameters used for the local training of the MO-Lunar
Lander environment.

parameter should be tuned carefully, as both the general trend and the
optimal value appear highly sensitive to the type of learning problem.
The results nevertheless support the use of this modified similarity
metric: the use of a well-tuned topR parameter is shown to improve
performance significantly compared to the standard metric that is re-
covered with R = 0 in two out of three studied environments. For
the MO-LL environment, the highest mean scalarised client reward
of 33.18 is obtained for R = 0.2, representing an improvement of
approximately 7.6% over the result of 30.84 for R = 0. For the DST
environment, the improvement is even greater: from 2.52 for R = 0
to 3.76 for R = 0.8, an increase of roughly 49%.

Parameter name Value
env minecart-deterministic-v0
policy MlpPolicy
learning_rate 0.0002
batch_size 64
buffer_size 50000
learning_starts 50000
gamma 0.99
target_update_interval 750
train_freq 32
gradient_steps 32
exploration_fraction 0.8
exploration_final_eps 0.05
net_arch [256, 256]

Table 6: Set of parameters used for the local training of the Determin-
istic Minecart environment.

6.3.3 Clustering validation

In this section, we show and briefly discuss additional results of the
clustering validation experiments.
MO-Lunar Lander. Figure 9 shows the similarity of clients at three
training stages during training in the MO-LL environment on an un-
balanced preference distribution. Three groups with distinct similar-
ity are clearly recognisable from the earliest stages of the training
process; these correspond to the sets of clients that have been as-
signed the same preferences, with two such sets evidently grouped to-
gether. Later stages show the gradual separation of the different sets,
likely through the clustering process. However, the two client sets
that showed a high similarity from the beginning (both contained in
the largest, top-left block in the figure) appear to remain in the same
cluster until the end of the training process, never being separated.
This could indicate either that the two different preference weights

Figure 7: Mean scalarised reward obtained by different algorithms on the Deep-Sea Treasure (top) and Deterministic Minecart (bottom) envi-
ronments, compared across preference distributions.

Parameter name Value
env deep-sea-treasure-v0
policy MlpPolicy
learning_rate 0.004
batch_size 128
buffer_size 10000
learning_starts 1000
gamma 0.98
target_update_interval 600
train_freq 16
gradient_steps 8
exploration_fraction 0.2
exploration_final_eps 0.07
net_arch [256, 256]

Table 7: Set of parameters used for the local training of the Deep-Sea
Treasure environment.

Figure 8: Impact of the choice of topR parameter on average reward
obtained by clients. Left to right: results for MO-Lunar Lander, De-
terministic Minecart and Deep-Sea Treasure environments.

assigned to the two sets are naturally compatible during the training
process, or that the FedPref algorithm might sometimes struggle to
fully separate incompatible sets of clients before they converge to
a local optimum. The latter could also be a consequence of the im-
balanced distribution of potentially incompatible clients in this case;
perhaps a small number of incompatible clients is ’dominated’ by the
remaining large number of compatible clients in the same cluster.

Det. Minecart. Figure 10 and Figure 11 show client similarities
during training on the Det. Minecart environment with the balanced
and unbalanced distribution of preferences, respectively. These
results also illustrate the challenges of this environment that were
discussed in the main part of the paper: the sparse reward space

Threshold MO-LL DMC DST

−1.0 32.22 σ11.3 −1.91σ1.0 4.41σ1.7
−0.8 31.74σ11.3 −2.29σ1.0 2.49σ1.7
−0.6 32.09σ13.0 −2.42σ1.7 4.63 σ3.1
−0.4 29.65σ13.2 -1.82 σ1.5 3.20σ1.5
−0.2 27.47σ11.2 −2.63σ0.9 2.73σ2.5
0.0 22.73σ16.4 −2.42σ1.2 1.56σ2.0
0.2 13.24σ11.7 −2.24σ1.6 −0.69σ2.0
0.4 13.53σ7.1 −3.61σ0.7 0.92σ2.3
0.6 14.03σ11.9 −2.78σ2.2 0.85σ1.5
0.8 9.95σ10.0 −2.72σ1.5 1.20σ2.2

Table 8: Numerical results for minimum-similarity sensitivity analy-
sis visualised in the main part of the paper. All configurations were
run with 10 different random seeds across 20 clients per run.

appears to make it difficult to reliably discover client similarities
during the clustering process. We observe in both figures that clients
never reach high levels of similarity as seen in the results of the
MO-LL environment; it is likely that this also impedes the clustering
process, leading to a suboptimal grouping into clusters. However,
some successful collaboration appears to take place, as evidences
by the darker-coloured patches in the middle and right images in
both figures. This matches our experimental conclusions in the main
paper, that the FedPref algorithm does accomplish some useful
collaboration leading to improvement of client results, but highly
sparse solution spaces remain a challenge.

Deep-Sea Treasure. Sample results for the development of client

topR MO-LL DMC DST

0.2 33.18 σ11.1 −2.58 σ1.0 2.24 σ3.0
0.4 30.04 σ11.1 −3.18 σ1.0 1.89 σ3.0
0.6 30.42 σ13.3 -2.44 σ1.8 1.35 σ3.8
0.8 31.17 σ11.7 −2.65 σ1.3 3.76 σ4.0
1.0 30.84 σ10.4 −2.49 σ1.2 2.52 σ2.8

Table 9: Numerical results for topR sensitivity analysis visualised
in the main part of the paper. All configurations were run with 10
different random seeds across 20 clients per run.

Figure 9: Mutual client similarity at different stages during a single
experimental run on the MO-LL environment, with unbalanced pref-
erence distribution. Left to right: client similarities after aggregation
round 5, 14 and 24 of 28, respectively.

Figure 10: Mutual client similarity at different stages during a single
experimental run on the DMC environment, with balanced prefer-
ence distribution. Left to right: client similarities after aggregation
round 5, 15 and 25 of 38, respectively.

similarity during training on the Deep-Sea Treasure environment
with balanced and unbalanced preference assignment are shown in
Figure 12 and Figure 13, respectively. In both figures, we observe
that a grouping of clients becomes visible quite early in the learning
process. Though this grouping is not perfect, it does largely corre-
spond to those sets of clients that have been assigned the same pref-
erence. The flaws in the grouping process likely spring from an early
clustering step, where preference similarities were not fully reflected
in the respective model gradients.

Figure 11: Mutual client similarity at different stages during a single
experimental run on the DMC environment, with unbalanced pref-
erence distribution. Left to right: client similarities after aggregation
round 5, 15 and 25 of 38, respectively.

Figure 12: Mutual client similarity at different stages during a single
experimental run on the DST environment, with balanced preference
distribution. Left to right: client similarities after aggregation round
5, 15 and 25 of 28, respectively.

Figure 13: Mutual client similarity at different stages during a single
experimental run on the DST environment, with unbalanced prefer-
ence distribution. Left to right: client similarities after aggregation
round 5, 15 and 25 of 28, respectively.

