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Abstract. The allocation of tasks to operators with different skill
levels is crucial in the manufacturing industry, which is known as
Human Resources Assignment Problem (HRAP). In the literature,
HRAP is usually solved through linear programming and meta-
heuristics methods. However these methods face limitations in their
ability to take into account the human factor in a more complex man-
ner (e.g., uncertainty of efficiency at a given time, uncertainty of
availability at a given time, personal preferences, ability to learn and
retain information, and to be able to use it when needed). To effi-
ciently handle this complex nature of the problem, this paper intro-
duces an innovative approach that leverages Multi-Objective Multi-
Agent Reinforcement Learning (MOMARL) to optimize HRAP in
the context of maintenance activities/tasks on production lines. To
the best of our knowledge, this is the first paper focusing on mod-
eling a technician’s knowledge as part of a MOMARL framework,
along with its impact on HRAP.

1 Introduction
As time goes by, digital technologies are becoming more widespread
in the workplace. However, at the shop-floor level, this presents chal-
lenges not only due to technological advancements (upgrading the
factory with new technologies), but also due to organizational dif-
ficulties (altering the way operators perform their daily tasks). Al-
though it is widely recognized that the recent technological advance-
ments (incl., Cloud, Internet of Things, Artificial Intelligence, etc.)
have driven efficiency and productivity, recent studies suggest that
they also contribute to a growing divide among workers due to vari-
ous side effects[13][12][14][7].

At the forefront of these issues is the rise of routine tasks and the
lack of emphasis on training low-level workers. The contrast in re-
gards to skill is becoming more evident, as most current digital assis-
tance solutions are only training employees that are already skilled
enough to be up-skilled, at the cost of the others. This growing rift
highlights a critical challenge in the Human Resources Assignment
Problem (HRAP), where the optimal allocation of human resources
to various tasks must be balanced against human development con-
cerns, such as mental health or continuous progression. Traditional
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HRAP solutions, primarily utilizing operations research techniques
like linear programming and meta-heuristics, often require simpli-
fications that fail to capture the dynamic and stochastic nature of
real-world environments, particularly those involving complex hu-
man factors.

To address this trend and reduce the skills gap within the HRAP
field, we propose a novel approach using Multi-Objective Multi-
Agent Reinforcement Learning (MOMARL). Our approach aims to
optimize maintenance technician assignment in a manufacturing con-
text by focusing not only on task allocation but also modeling the
learning processes through a novel representation of knowledge and
its propagation among technicians and tasks. This ensures a more eq-
uitable and realistic assignment process, where all employees have
the opportunity to develop and use their skills.

This paper is structured as follows : we first provide a background
on Multi-Objective Multi-Agent Reinforcement Learning, detailing
its relevance and application to HRAP. Following this, we describe
our modeling of technicians and tasks, including the introduction
of knowledge grids based on the task’s representation, and the cor-
responding propagation mechanisms. We then present our exper-
imental setup and results, demonstrating the effectiveness of our
MOMARL-based framework. Finally, we discuss related work and
conclude with insights and future research directions.

By integrating MOMARL into HRAP, our aim is to close the gap
between traditional optimization methods and the complex and dy-
namic requirements of modern human resource management, ulti-
mately contributing to more efficient, humane, and intelligent human
resource allocation in manufacturing settings.

2 Background

2.1 Multi-Objective Multi-agent Reinforcement
Learning

A Multi-Objective Multi-Agent context to an optimization problem
such as this one can be modeled as a Multi-Objective Stochastic
Game (MOSG) [10].
A MOSG is formally defined as a tuple M = (S,A, T,R), with
nT ≥ 2 agents and d ≥ 2 objectives, where :

• S : state space



• A = A1 × ... × An a set of joint actions, Ai is the action set of
agent i

• T : S ×A× S → [0, 1] the probabilistic transition function
• R = R1 × ...×Rn reward functions, Rj : S×A×S → Rd the

vectorial reward function of agent j for each of the d objectives.

In our specific case, a MOSG will be sufficient, although a more
realistic approach could consider using a multi-objective partially
observable stochastic game (MOPOSG) where agents do not have
access to the full state of the environment.

Each agent will learn a policy πi : S × Ai → [0, 1], maximizing
the expected discounted long-term reward.

Here we chose an ESR approach. Despite the long-term nature
of our environment, which allows us to evaluate the agent’s utility
over multiple executions, which could have motivated the choice of
SER [10], promoting simplicity of computation in the beginning, and
promoting the agent’s cooperation through simpler rewards seemed
more important.

2.2 Human resources allocation problem

The original Allocation Problem (AP) is one of the first studied com-
binatorial problems. It consists of assigning limited resources to a
set of tasks with the aim of optimizing one or more objectives, under
the resources constraints. The relevance of APs comes from its many
applications, such as, but not limited to, the dispatching of orders or
supplies along a production line [5], but also outside of manufactur-
ing, for example, in healthcare, project management or review sys-
tems. The Human Resources Allocation Problem (HRAP) is simply
an extension of the AP where the resources subject to constraints and
allocation are people [1]. However, it is crucial to properly consider
the complexity added by the human factor [3].

Traditionally, HRAP has been addressed using operations research
techniques, such as linear programming, Hungarian methods, ge-
netic algorithms, and ant colonies to list a few [1]. However, these
methods often require simplifications and assumptions that may not
hold in dynamic, complex, and stochastic environments. Such diffi-
culties being a given considering the addition of the human nature
and considerations to the well-known AP problem, it is only natu-
ral for more sophisticated approaches to emerge with the advent of
machine learning. Multi-agent systems, among them multi-agent re-
inforcement learning (MARL), seem to offer a promising framework
for HR allocation, where each employee can be modeled as an agent
with its own characteristics (preferences, skills, goals, limitations).

Figure 1. Schema of the model

Table 1. Some mathematical notations that will be used

Notation Description

T Technician set
Tk Ticket set
Tj Technician j
Gj Knowledge grid of Tj

hl
j

Tickets treated over horizon l
by Tj

lr Learning rate of a technician
tki Maintenance ticket i
etki Embedding of ticket i
eTj Embedding of technician j

kTj ,tki
Knowledge of Tj for tki

σp Propagation parameter
τ Transmission parameter

n
Dimension of a ticket

embedding
nT number of technicians

htelTj

Embedding of past l tk treated
by Tj

3 Modelisation
3.1 Environment

3.1.1 Technicians

The goal of an algorithm aiming to solve an HRAP instance, is to
allocate humans, here some maintenance technicians. Let Tj ∈ T
be the j-th technician in our system. it is defined by the following
attributes : a learning rate lrj representing his ability to learn,
a knowledge grid Gj representing his global knowledge about
machines and maintenance activities, and a history hl

j a value
representing the proportion of tickets Tj has treated over the horizon
l.

The technicians need to be embedded to be effectively used in a
neural network. In order to do that, we create an embedded vector in
two parts :

eTj = features_embedding + htelTj
(1)

where htelTj
is the output of a Gated Recurrent Unit (GRU) cell,

which aims to capture the history of the tickets previously treated by
the technician. This approach has previously been used successfully
to model tasks previously completed by an agent [16].

3.1.2 Tickets

The tickets here function similarly to tasks in HRAP. Each ticket
tki ∈ Tk does not need precise design specifications because
they will be processed by a ticket feature extractor. This extractor
retrieves relevant information from the tickets and returns them
as an embedding etki of dimension n, which will then be the only
thing used in the rest of the loop. This allows us to free ourselves
from some constraints of the current literature when it comes to
knowledge representation in manufacturing, oftentimes limited to a
small set of categories.

In the context of this paper, we are generating some synthetic ran-
dom 2-d embedding from normal distributions. This decision has
been taken in an attempt to simplify a first implementation of this
idea. It is also based on some principal components analysis done on
real manufacturing maintenance data from a partner company, which
was then embedded through an S-BERT model.



3.1.3 Knowledge Grids

A knowledge grid is a n-dimensional representation of the knowl-
edge of a technician. It is modeled as a n-d array, where each dimen-
sion is a dimension in the embedding etki of the maintenance ticket
tki. Thus Gk(e

tk
i ) represents the knowledge of Tj for a ticket tki,

which will be called kTj ,tki .

Figure 2. Example of an initial experience grid

Figure 3. Same experience grid after 50 steps of the environment with
random actions taken

The experience grids displayed in Figure (2) and Figure (3) rep-
resent the state of the knowledge of an agent of this environment.
Figure (2) is this state at initialisation time, and Figure (3) after 50
steps.
The axis Coord1 and Coord2 correspond to the two dimensions of
the tickets embeddings in this environment. The third dimension Ex-
perience Value represents the knowledge of a technician at a certain
point in the embedding space.

3.1.4 Knowledge

The knowledge kTk,tki of a technician at a given location of the em-
bedding space is logarithmic with respect to the number of experi-
ence the technician has for this type of ticket. However there are 3
mechanisms that are used to increase this knowledge which are ap-
plied in order :

1. New experience : we assume that the previous knowledge can be
expressed as [6]

kprev = log(1 + previous number of experiences) (2)

Thus we compute the following :

∆k = log(1 +
1

exp kprev
)× lrj (3)

2. Knowledge transfer : considering maintenance expert’s knowl-
edge, we assume that a technician Ta may transfer part of his

knowledge to another technician Tb through supervision, a mecha-
nism also mentioned by [6]. We represent it as a weighted average
between the two knowledge, the one assigned and the one super-
vising. This average is weighted by a parameter τ representing
how much of the information is transferred.

∆kTb = (kprev
Tb

+∆kTb)(1− τ) + kprev
Ta

× τ − kprev
Tb

(4)

3. Knowledge propagation : having discussed it with maintenance
experts, we assume that knowledge about a certain maintenance
operation can be transferred to neighboring operations. This could
be translated in several ways : knowledge about a machine, about
the brand, about the type of failure. To represent this behavior,
each increase in a technician’s knowledge grid will be propagated
in a neighborhood using a Gaussian kernel K with the following

Let G∆(x) =

{
∆k if x = etki , the ticket treated
0 else

(5)

and

Let s =
kincr

convolve(G∆,K)
(6)

in

Gnew = Gold + convolve(G∆,K)× s (7)

3.1.5 Environment loop

Figure 4. Schema of the environment loop

The Figure (4) describes the behavior and interactions of our envi-
ronment for easier understanding.

3.2 State

The state space S is defined as a collection of individual spaces Sj ,
one per agent. However, we are still in a fully observable setting, as
these spaces contain the same information, just in a different order.

Sj = (eTj , e
tk
i , eT1 , ..., e

T
nT

) (8)

In particular, each technician will have its own features placed at
the beginning of the vector.



3.3 Actions

There are three types of actions an agent can take, with some
constraints. Each agent will simultaneously pick an action among
those three.

A = A1×...×AnT , with Aj ⊆ {assign, supervise, nothing}

• Assign : an agent that chooses this action will choose to treat the
current ticket, exactly one agent has to take this action.

• Supervise : an agent that chooses this action will choose to su-
pervise the agent treating the current ticket, at most one agent can
take this action

• Nothing : an agent that chooses this action will do nothing, all the
remaining agents should pick this action

3.4 Rewards

In the following, let DG = De1 × ...×Den where Dei is the set for
the i-th dimension of a ticket embedding. To promote collaboration
between our agents, especially regarding the supervision action, the
rewards are computed as a team. That is to say, each reward is an ag-
gregate (here an average) of what can be considered the "individual"
rewards.
Let’s consider the following individual rewards :

• Total knowledge : representing the objective of having techni-
cians that become as knowledgeable as possible, it is defined as
the hypervolume of the knowledge grid and expressed as such

rtotTj
=

∫
DG

GTj (x)dx (9)

in practice, this integral translates to nested sums as each dimen-
sion of our knowledge grids is discrete for ease of computations
purposes.

• Proportion of tickets treated : representing the objective of not
focusing solely on one technician, and having an appropriate dis-
tribution of tasks. With hl

j = [0, 1, ..., 1] a vector of size l where
hl
j(t) = 0 means the (l − t)-th last ticket has not been treated by

Tj (and 1 means that it has), and

pj =
1

l

∑
i

hl
j(i) (10)

we finally have

rpTj
= exp

(pj−pideal)
2

2σ2
p , with pideal =

1

nT
(11)

with the goal of pushing the agents to handle each the same num-
ber of tickets, by punishing both under and over performance.

• Highest knowledge : representing the objective to get some de-
gree of specialization in an agent. although it may seem counter-
intuitive at first, this objective is actually in conflict with rtotTj

rhkTj
= max

x∈DG

GTj (x) (12)

In the following, let’s assume

R1 = rtotTj
(13)

4 Experiments and Results
The experiments have been run using our own implementation of a
technician assignment environment, and a slightly modified version
of the Cooperative MOMAPPO delivered with the MOMALand li-
brary, both publicly available on GitHub, with the following key hy-
perparameters.

Table 2. Training hyperparameters - MOMAPPO and Environment

Hyperparameter Value

num_weights 500
weights_generation uniform

num_steps_per_epoch 120
actor_net_arch [256,256]
critic_net_arch [256,256]
learning_rate 0.001

gru_hidden_size 32

num_technicians 3
technicians_history_horizon 20

num_experience_initial_seeds 5
experience_propagation_var_scale 0.05

grid_size 100
ticket_embedding_shape 2

transmission_factor 0.1
proportion_reward_sigma 0.1

Figure 5. Training hypervolume

Figure 6. Training expected utility

The Figure (5) and Figure (6) suggest that our agent quickly
reached a plateau in his performances. This could be due to a
number of reasons, but the most likely scenario here is that by using
rewards designed on such different scales (one reward between 0
and 1 and another usually in the thousands), our agent learns to
focus only on the more "meaningful" reward.
This conclusion seems to be in line with Figure (7) which depicts
very high sparsity, which is usually not what we are looking for. Our
solutions are very much focused on maximizing one objective above
all others : the Total knowledge.

We tried implementing a vector-based method : GPI-PD, however
the weight selection algorithm introduced the same bias in the re-



Figure 7. Training sparsity

sults, a reward re-design seems to be a more promising choice for
the future.

Figure 8. Baseline of literature : the policy of always choosing the most
knowledgeable technician

Figure 9. Baseline of literature : the policy of always choosing the most
knowledgeable technician

Figure (8) and Figure (9) show a benchmark of the behaviour of
two policies.
The first is a baseline policy, typical in the literature, represented by a
simple heuristic : always choose the most knowledgeable technician
for the task.
Its shortcomings are obvious : only the first agent to be picked has
treated any tickets.
The second benchmark is one made using a trained policy from our

approach. As we can see, the influence from the first reward is too
strong, it has led the behavior of this policy to tend towards always
increasing the same prefered agent. However we notice some occa-
sionnal changes in behaviour that let us think that this policy is capa-
ble of better results after some reward re-design.

5 Related Work
This is the first instance of using MOMARL to address the HRAP
within Industry 4.0 [3]. Existing literature on RL in maintenance
planning primarily focuses on the Job Shop Scheduling Problem
(JSSP) and its variants [9][15], often relying on simple heuris-
tics for technician selection. These heuristics can lead to hyper-
specialization, resulting in monotonous tasks and potential risks to
workers’ mental and physical health [2][12]. Our HRAP solution
uniquely prioritizes continuous technician learning in Industry 4.0
[3]. While some approaches categorize knowledge (e.g., mechanical
vs. electrical), this limits RL systems’ ability to adapt to new mainte-
nance challenges. Research highlights that learning-focused policies
enhance job satisfaction and operational efficiency, underscoring the
importance of HRAP systems that support continuous skill develop-
ment and worker empowerment [11].

Table 3. Related JSSP RL works

Heuristic Works

Pick technician at random [15]
Pick earliest technician available [15]

Pick best technician [9], [8]
Pick lest exhausted technician [9]

Discrete skill level [8], [9]

6 Conclusion and Future works
We introduced a new relationship between MOMARL and HRAP,
adding complexity to human behavior considerations that became
essential as HRAP policies were applied in real-world shop-floor set-
tings. Integrating MOMARL into HRAP offers a promising frame-
work for optimizing resource allocation while addressing complex
human factors such as skill development, partial specialization, and
fair task assignment. Our experimental results demonstrate the rele-
vance of this approach, highlighting improvements in task distribu-
tion and knowledge propagation. MOMARL also improves existing
frameworks with continuous knowledge and skill representation, bet-
ter aligning with current research, particularly those involving NLP
in maintenance documents such as [4]. Although this is a work in
progress, future work will focus on redesigning rewards to avoid such
learning issues, encapsulating this agent in a more complex and real-
istic industrial environment, to better highlight its relevancy against
challenges such as workers falling ill, the forgetting curve, the im-
pact of failure on learning, adding the concept of relative difficulty,
as [16] did with school exercises, and so on, as well as implement-
ing known HRAP heuristics to our case of maintenance scheduling
in a JSSP-like scheduling environment. The scalability of this solu-
tion also needs to be studied, as well as its adaptability to different
scenarios such as different types of labor.
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