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Abstract. There is a substantial demand for deep learning meth-
ods that can work with limited, high-dimensional, and noisy datasets.
Nonetheless, current research mostly neglects this area, especially
in the absence of prior expert knowledge or knowledge transfer. In
this work, we bridge this gap by studying the performance of deep
learning methods on the true data distribution in a limited, high-
dimensional, and noisy data setting. To this end, we conduct a sys-
tematic evaluation that reduces the available training data while re-
taining the challenging properties mentioned above. Furthermore, we
extensively search the space of hyperparameters and compare state-
of-the-art architectures and models build and trained from scratch
to advocate for the use of multi-objective tuning strategies. Our ex-
periments highlight the lack of performative deep learning models
in current literature and investigate the impact of training hyperpa-
rameters. We analyze the complexity of the models and demonstrate
the advantage of choosing models tuned under multi-objective crite-
ria in lower data regimes to reduce the likelihood to overfit. Lastly,
we demonstrate the importance of selecting a proper inductive bias
given a limited-sized dataset. Given our results, we conclude that
tuning models using a multi-objective criterion results in simpler yet
competitive models when reducing the number of data points.

1 Introduction

In recent years, deep learning celebrated unprecedented success
ranging from the rise of large language models [25, 40, 7] to the
discovery of new materials [31, 8] and image generation [34, 36].
Pushing models further toward the boundary of computation enables
a sheer unforeseeable range of possibilities [14], provided that the
amount of data matches the demand of the steadily growing models
and their hunger for data [6].
However, looking at the other end, where data is scarce but high-
dimensional and noisy, we are still facing substantial obstacles. Re-
search has long abstained from investigating deep learning models in
these circumstances, although countless real-world applications re-
quire performative models to drive development and research. Rare
diseases [3, 37] is a particular case of such an application where
data can have very high-dimensional, noisy measurements and is
limited by definition. Likewise, the discovery of new molecules to
improve on existing drugs is a fundamentally low data problem as
many newly proposed molecules are incompatible or even toxic [2].
Furthermore, archaeological discoveries rely on limited, highly com-

plex data [23, 20]. Deep learning has made tremendous progress in
the last few years, particularly regarding methodologies tailored for
data in large quantities. In this work, we address settings where the
data is limited, high-dimensional, and noisy by nature.
In recent work, Banerjee et al. [3] reflect on the state and applica-
bility of deep learning methods for investigating rare diseases. To
facilitate learning, they propose to increase the amount of data by
combining data sets, injecting prior knowledge, or transferring the
weights of a deep learning method trained on a related domain. How-
ever, in newly emerging fields such as diagnosing new rare diseases,
simply merging datasets falls out of the question as we do not have
relatable data. Therefore, using transfer learning to enable learning in
high-dimensional yet scarce data environments is not an option since
transferring weights from one domain to another might not always
benefit performance [48].
We explore the limitations of deep learning when confronted with
limited yet high-dimensional and noisy data without introducing
prior knowledge or transferring weights from another domain. To
do so, we conduct a systematic evaluation that mirrors the challeng-
ing data contexts and enables us to analyze deep learning and a deep
Gaussian Process-based model in a controlled framework, by sys-
tematically decreasing the available data, starting from the entire data
set, until only one percent of the original data remains. We then task
the algorithms to predict using the complete test data to evaluate their
abilities on the true data distribution. Furthermore, we extensively in-
vestigate the spaces of possible architectures and hyperparameters of
several deep learning techniques to provide insights and guidelines to
train models in this challenging setup. Specifically, we question the
trade-off between performance and complexity in a multi-objective
context. With our work, we demonstrate the capability of deep learn-
ing models to learn in this challenging framework.
The rest of the paper is structured as follows. We provide an overview
of related work in section two. In sections three and four, we present
our evaluation and deep learning models in detail before explaining
our experimental procedures. Finally, we display and discuss our re-
sults in sections five and six respectively.

2 Related Work

Training small and efficient models that function correctly in chal-
lenging conditions remains an important challenge. Recently, the re-
search community has recognized the lack of resources invested in



this branch of deep learning, and part of it is shifting its focus away
to reduce model complexity [5, 15, 30]. However, popular techniques
to enable stable training in small data regimes, such as transfer learn-
ing [44, 47] or knowledge distillation [21, 43, 39], is not possible by
definition of our problem framework as we are concerned with study-
ing the behavior of deep learning methods for entirely new domains.
Banerjee et al. [3] investigate the current state of machine learning in
the context of rare diseases, where the authors propose several tech-
niques to improve the dataset, such as harmonically combining data
sets and reducing class imbalance with decision tree-based methods,
as well as augmenting models, e.g., with knowledge graphs. Further-
more, applications of these techniques are summarized and analyzed.
In our study, we take a general perspective on this difficult-to-train
context, where the domain of rare diseases constitutes a specific case
instead of focusing entirely on this field. Moreover, compared to [3],
we do so without prior knowledge or the transfer of weights. Dou et
al. [9] provide a broad review of machine learning methods facing
small data challenges in molecular sciences. Our work differs since
we create a synthetic evaluation in which we systematically control
the quantity of information available to the learner. Additionally, we
limit our exploration of deep learning models and abstain from other
machine learning techniques as we seek to process high-dimensional
data, a domain in which deep learning methods have been excelling
in recent years, lifting the requirement to carefully design feature ex-
traction techniques as it is frequent for traditional machine learning
models. Brigato et al. [5] identified the need to find models that can
work under small data availability. In their pioneering study, the au-
thors reveal the benefit of using models with lower than state-of-the-
art complexity by investigating convolutional neural networks un-
der different image classification evaluations. Contrary to their work,
we do not consider using sophisticated data augmentation techniques
that require to be hand-designed and therefore sufficient prior knowl-
edge [5]. In contrast to other works on limited data [5, 15], where
the authors only present a few models per study, we expand our ex-
aminations to consider a broader range of deep learning models. As
we search the space of deep learning architectures exhaustively, our
work is related to Neural Architecture Search (NAS). NAS extends
hyperparameter optimization by additionally searching architectural
parameters [30, 10, 35]. It is concerned with finding the optimal net-
work architecture without relying on a researcher’s prior experience
and freeing the process of required intuition by reducing the neces-
sity of human intervention [35]. Our work builds on the principles of
neural architecture search by considering a model’s complexity and
performance as two criteria for finding optimal architecture and tun-
ing hyperparameters. We optimize hyperparameters using Bayesian
and bandit-based search [13] to find suitable architectures and tun-
ing hyperparameters. When performing our search concerning per-
formance and complexity, we are interested in finding Pareto-optimal
models resulting from the trade-off between these conflicting criteria.
The Pareto frontier marks the boundary where we achieve an optimal
trade-off between performance and model size such that we cannot
find a model further optimized in one aspect without losing in the
other [30].

3 Methods

We base our study on three pillars: the dataset, the models, and the
search strategies. At first, we present our systematic evaluation which
comprises the dataset. Then, we present the optimization strategies
and lastly, the deep learning models.

3.1 Evaluation

In our experiments, we want to shed light on the performance
and limitations of modern deep-learning techniques when faced
with highly complex and noisy data under limited availability. To
gain insights into the impact of the size of the dataset, we aim
to show the limitations of such techniques when we systemati-
cally reduce the available data. More specifically, we consider the
PTB-XL dataset [41], consisting of 21.837, 12-lead electrocardio-
gram recordings of 18.885 patients, having 71 labels in total [38]
as our base data set, denoted as X . The dataset contains an un-
balanced label distribution, with possibly multiple labels per data
point and noisy, high-dimensional time series data. We split X into
a training T , validation V , and test set U in accordance with the
stratified folds, as proposed in [41]. We use a downsampling rate,
δ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 0.85, 0.9, 0.95, 0.99}, to draw M sub-
sets from T uniformly at random. For each δ, the random subset
fulfills the following condition

|T i
δ | = ⌊|T | ∗ (1− δ)⌋ (1)

with i = 1, . . . ,M , | · | denoting the size of a set and ⌊·⌋ the
floor function. By training our models on the same fixed sets T i

δ , for
all values of i, and thus, avoiding training our models on different
sub-samples of the data, we ensure comparability across the train-
ing runs of the different models. Further, we consider the complete
validation set to tune the parameters according to the true data dis-
tribution. The validation in the original data split has been ensured
to have high-quality samples and a balanced label distribution [41].
Thus, our tuning data set concerns:

Di
δ = {T i

δ ,V}. (2)

We determine the performances and limitations of modern deep
learning models in a two-fold procedure, where we define perfor-
mance in terms of the macro-averaged area under the curve (macro
AUC). To compute the macro AUC, each class AUC is calculated in-
dependently before averaging them. This accounts for a better judg-
ment of the classifier than accuracy as it relieves the requirement to
optimize for a threshold value [38], whereas micro-averaging, i.e.,
computing the average based on the combined true- and false posi-
tive rates of each class, would lead to an overrepresentation of highly
populated classes [41].

3.2 Search

The task of automatically finding the optimal hyperparameters, be
it architectural or training settings, is an active field of research
[46, 13]. In hyperparameter optimization frameworks, the aim is to
find the optimal setting of hyperparameters without having a human-
in-the-loop to eliminate possible biases and the need for prior ex-
perience regarding specific machine learning models. For this, trials
are sampled according to some heuristic and the black-box model
is evaluated according to user-specified performance metrics. For
our purposes, we differentiate between bandit-based optimization via
the Asynchronous Successive Halving Algorithm (ASHA) [26], and
Bayesian optimization using the Multiobjective Tree Parsen Estima-
tor (MTPE) [32].

3.2.1 Asynchronous Successive Halving Algorithm

ASHA [26] can be best understood as a best-arm identification prob-
lem in a multi-armed bandit setup. The algorithm samples hyperpa-
rameter configurations where each configuration corresponds to an



arm. It aims to identify the best-performing arm and, where in this
setting this arm corresponds to the best-performing hyperparameter
configuration. Formally, given a set of hyperparameter configurations
Θ, we want to find the single best-performing arm according to the
evaluation function f ,

maximizef(θ)

subject to θ ∈ Θ
(3)

In doing so, the algorithm allocates a uniform computational bud-
get to a predetermined number of configurations. After each eval-
uation, poorly performing configurations are eliminated, and their
computational budget is redistributed to the remaining trials. This
procedure is called successive halving [19]. In ASHA, this elimina-
tion process occurs asynchronously by evaluating each arm as soon
as possible instead of waiting for the remaining arms, repeating the
process until only one trial is left. Due to its asynchronous nature, the
algorithm efficiently enables parallelization and scalability.

3.2.2 Multi-objective Tree Parsen Estimator

MTPE [32] is a multi-objective hyperparameter optimization algo-
rithm in the form of

maximize f(θ) = (f1(θ), ..., fM (θ))

subject to θ ∈ Θ
(4)

that, similar to ASHA, tries to find the best hyperparameter configu-
ration, but instead of a single objective evaluation, it considers multi-
ple objective functions. For this, a metric vector is constructed given
an evaluation, ζ = f(θ). Using this metric vector, containing the
respective evaluations of each objective function, we can compare
two hyperparameter settings by the concept of domination. Follow-
ing1[32], a vector ζ dominates a set of vectors Z if and only if for ev-
ery ζ′ ∈ Z : ∀ i ζi ≥ ζ′i and ∃ j such that ζj > ζj , denoted as ζ ≻ Z,
meaning that the metric vector ζ performs better in at least one metric
j ∈ {1 . . .M}, while performing better or equal in the other metrics.
Similarly, weak domination is defined as ∀ζ′ ∈ Z : ∀ i ζi ≥ ζ′i and
denoted with ζ ⪰ Z. With the concept of domination, we can define
two densities, l(θ) and g(θ),

p(θ|ζ) =

{
l(θ) if ζ ≻ Z∗ ∪ ζ||Z
g(θ) if ζ ⪯ Z∗ (5)

where Z∗ = p(ζ ≻ Z∗ ∪ ζ||Z∗) = γ with ζ||Z denoting that two
vectors are incomparable (i.e., neither ζ ⪰ Z nor ζ ⪯ Z). Thus, Z∗

contains trials that are inferior or incomparable to ζ, while γ consti-
tutes a threshold parameter that can be set by the user. Essentially,
γ, divides the hyperparameter configuration according to their good-
ness, l(θ), i.e., trials that dominate older trials, and badness, g(θ),
respectively. A new configuration is sampled by evaluating an acqui-
sition function. In the case of MTPE, the corresponding acquisition
function is the Expected Hypervolume Improvement (EHVI) given
by

EHV IZ∗(x) ∝ (γ +
g(θ)

l(θ)
(1− γ))−1 (6)

giving more emphasis to samples with a high probability under
l(θ) and a low probability under g(θ). Subsequently, after evaluat-
ing the new hyperparameter configuration in terms of the objective

1 Please note that instead of following the original notation of [32], we de-
cided to switch the signs to emphasize that we are dealing with a maximiza-
tion problem.

functions {fm}Mm=1, the probability densities are updated, and a pro-
ceeding sample is chosen according to the acquisition function.

3.3 Models

We test a broad range of models to demonstrate the state of deep
learning under limited data availability. We investigate the current
best-performing models reported for the original PTB-XL dataset.
Next, we question the performance of popular deep learning methods
by extensively searching possible architectural settings.

3.3.1 State of the Art

As a baseline, we consider the models reported in [28, 29] consisting
of a state space model (S4) [28, 16], a one-dimensional XResnet
model [18], and an LSTM-based model (CPC) [29]. Each of these
models comes with a fixed architecture. First, we train the models
on each T i

δ with their default training hyperparameters as described
in [28, 29]. The training hyperparameters under investigation are the
learning rate and weight decay as these have a crucial impact on a
deep learning model’s performance [13], and batch size, which has
shown to directly correlate with the ability to generalize [24, 17, 22].
Next, we tune each of these hyperparameters using the bandit-based
hyperparameter optimization ASHA to analyze their impact on the
performance of smaller data samples. For our purposes, we do not
tune the SOTA models on the multi-objective criterion as their model
size does not change since we consider their architectures fixed.

3.3.2 Base models

Additionally to the state-of-the-art models, we investigate a range
of deep learning models, which we refer to as Base models, com-
prised of a convolutional neural network architecture (CNN), an
LSTM-based architecture (LSTM), a transformer encoder (ENC),
and a state-space model (S4) [16]. Furthermore, we explore the per-
formance of deep Gaussian Process approximations using Random
Fourier Features and convolutional layers (ConvRFF) [42].
We tune these models regarding architectural hyperparameters, such
as the width and depth of the layers, activation functions, and dropout
(see the Supplementary Information for a detailed overview). Fur-
ther, we tune them for the same tuning hyperparameters as the SOTA
models using ASHA [26] to gain insights over the preferred archi-
tectures in low but high-dimensional data settings. Additionally, we
tune the hyperparameters of the Base models using a multi-objective
search procedure concerning performance and complexity realized
by the MTPE.

4 Results
We search the space of training and architectural hyperparameters
using the single objective ASHA and the multi-objective TPE. We
describe the experimental setup in the Supplementary Information
B and present an overview of the associated experiments in Table
1. Each model is tuned for every down sample rate for each of the
five data samples and 100 trials per optimization strategy, resulting
in |δ|xMx100 = 450 trials per optimization strategy. In the case
of ASHA, we select the top-performing model of each data sample
to train it on the respective data sample. Contrarily, as the multi-
objective search does not result in a single best model but rather in
a Pareto front of model configurations, we train each member of the



Figure 1. Performance is measured as macro AUC for all models, starting from the SOTA models (left), single-objectively tuned SOTA models (middle-left),
single-objectively tuned Base models (middle-left), and multi-objectively tuned models (right) across all down sample rates.

Figure 2. Loss of performance when comparing each down sample rate to the average performance on the entire data set, measured as macro AUC for all
models, starting from the SOTA models (left), single-objectively tuned SOTA models (middle-left), single-objectively tuned Base models (middle-left), and

multi-objectively tuned models (right) across all down sampling rates. The performance remains close to the baseline up to a down sample rate of 40%.

Model Configurations Pareto Trials Full Runs
S4 900 216 351

CPC 450 - 90
XResnet 450 - 90

CNN 900 312 357
ConvRFF 900 248 293

LSTM 450 207 252
ENC 450 294 339

Total 4500 1277 1772

Table 1. An overview of the experiments. Each SOTA model has precisely
one configuration, whereas each tuning run search (5x9x100 = 450)

models, given 9 different down sample, 5 data samples, and 100 trials per
optimization strategy. The number of Pareto trials varies for each model and

each down sample rate. In total, we conduct 1772 training runs.

Figure 3. Number of Pareto optimal models per down sample rate.

Pareto front. In total, we train 1.772 models over 100 epochs, ranging
over 9 different down sample rate settings and five data samples per
down sample rate.
Figure 3 displays the number of Pareto models found per model and
down sample rate. Notably, the number of Pareto optimal models
decreases together with the data.



Performance

At first, we compare the performances on the test data, U , of each
model, trained for each T i

δ . We depict their results in Figure 1 start-
ing with the SOTA models on the left, the best-performing retuned
models via the single-objective ASHA, and lastly, the models found
by the multi-objective Bayesian search. In the case of the single ob-
jective hyperparameter tuning, we report that the performance of the
SOTA models is higher than that of the Base models. However, the
higher the down sample rate, the smaller the gap becomes, resulting
in a marginal performance advantage for the S4 (0.68± 0.07) com-
pared to the CNN (0.68 ± 0.03) for a down sample rate of 99%. In
the multi-objective case, the CNN surpasses the S4 for a down sam-
ple rate of 60%, 95%, and 99%. For a down sample rate of 99%, the
Gaussian process-based model ConvRFF significantly closes the gap
between the two models based on point estimates and even beats the
S4 model regarding macro AUC. Notably, the performance for all
models remains stable upon a loss of 40 percent of the sample size,
after which it starts to decline, as shown in Figure 2. Overall S4 is
the superior model for most of the down sample rates.
Figure 2 shows the difference in the average performance of each
model given a down sample rate of 0%, i.e., the complete data set,
depicting the SOTA models (left), the single objective models (mid-
dle), and the multi-objective models (right). Remarkably, comparing
all three configurations, we see that the multi-objectively tuned mod-
els perform stable even up to a down sample rate of 60%, remaining
superior for all remaining down sample rates.

Compression vs. Performance

The trade-off between complexity and performance for the multi-
objectively optimized models is shown in Figures 4, where we depict
the Pareto front of a CNN model trained on T 3

0.85 after tuning it for
10 epochs. In this example, we demonstrate that a model’s complex-
ity directly influences the performance in the early epochs. Two ad-
ditional multi-objective search results are shown in the Supplemen-
tary Material C for a S4 and a ConvRFF model that culminated in
two Pareto fronts that are less promiennt concerning their spread and
amount compared to Figure 4.
Figure 5 shows the performances of fully trained models using T0.85,
and more down sample rates are found in the Supplementary Infor-
mation D. From this Figure, we can observe that given a fixed down
sample rate the model size can be reduced without severely impact-
ing the performance in return by carefully investigating the Pareto
front.

Training Hyperparameters

Next, we investigate the role of the training hyperparameters. More
specifically, we study whether the learning rate, weight decay,
dropout, or batch size is impacted by the reduction of data sam-
ples. We depict the identified hyperparameters of each of the three
searches, i.e., the search for the SOTA models, the single-objective,
and the multi-objective Base models in Figures 15, 16, 17 (found
in the Supplementary Information E). We note that the weight de-
cay has no particular tendency except for the Bayesian optimisation
procedure that saw an increase from 0.004 ± 0.01 for a down sam-
ple rate of 0% to 0.02 ± 0.03 given only 1% of the data set. The
optimization algorithms set the batch size at a slightly lower value
compared to the original batch size of 32 as reported in [28], particu-
larly for higher down sample rates (26.11± 31.77 to 21.30± 24.52

Figure 4. Pareto front of a CNN tuned on T 4
0.85 while being optimized for

performance and complexity.

Figure 5. Size vs. performance of fully trained models after being
optimized on T i

0.85 for performance and complexity simultaneously.
Displayed for all i = 1 . . . 5.



for a down sample rate of 0% and 99% averaged over all search
results). Overall, all three searches slightly increased the learning
rates in their configurations compared to the learning rate used on
the entire data set (0.005± 0.008 to 0.018± 0.022 again for δ = 0
and δ = 0.99 averaged over all searches). Lastly, the Bayesian
multi-objective search resulted in higher dropout rates compared by
roughly 15% (0.24 ± 0.19 to 0.40 ± 0.22, δ = 0 and δ = 0.99
respectively).

Overfit

Subsequently, we inspect the models for their susceptibility to over-
fit when reducing the amount of training data. Here, we determine
overfit as the training loss minus the validation loss, and likewise
training macro AUC minus the validation macro AUC. We show the
respective values for all training epochs, averaged over each down
sample rate in Figure 6, while displaying the non-averaged results
for each search in Figure 18 and Figure 20 in the Supplementary In-
formation F. Surprisingly, the SOTA models are well-tuned on aver-
age concerning overfit in both loss and performance, having a slight
overfit on the loss. The models found by ASHA show a larger av-
erage overfit with respect to to the performance values. In contrast,
the multi-objective models demonstrate comparably marginal overfit
in terms of averaged loss and macro AUC. Figure 7 displays single
trajectories of overfit and loss per model tuned with single-objective
and multi-objective search, respectively. In both cases, the trajecto-
ries indicate that for a subset of models, the overfit diverges more
strongly from the average case. Overall, the multi-objective search
criterion results in models that are well-tuned on average.

Ability to capture classes

Lastly, we investigate the performance of each model for each class
for a fixed down sample rate of 99% to reflect the most extreme case,
meaning that only one percent of the original data is available. Fig-
ures 22-24, given in the Supplementary Information G, show the pre-
diction of each model for each of the classes in the PTB-XL data
set [41]. For all models, most of the classes are correct, i.e., they
achieved a macro AUC of 50% or higher during evaluation on the
complete test set U .

5 Discussion

Our study compared the performance of state-of-the-art models and
basic architectures via a systematic evaluation that tests a model’s
ability to deal with limited, highly dimensional, and noisy data. Fur-
thermore, we extensively explored the space of architectural and
training hyperparameters.
Each model suffers in performance loss when reducing the amount
of data points. However, some models, such as the transformer en-
coder, are more affected than others (e.g., the state space model S4).
We found that the models are surprisingly robust regarding overfit.
Overall, we state that the models that are tuned with respect to per-
formance and complexity are well-tuned (i.e., no over- nor underfit)
compared to their single-objective counterparts.
Training hyperparameters, such as the learning rate and batch size,
have a clear tendency to be impacted by a given a lower number of
data points corroborating earlier findings in the literature [17], par-
ticularly for the lower batch sizes [24, 22]. Weight decay only plays

Figure 6. Overfit in terms of loss and macro AUC, calculated by
subtracting the validation value from the training value, averaged over all

down sample rates, and displayed for all epochs. In the case of the loss, we
normalized the training and validation values before subtracting the latter

from the former. The plots compare single-objectively (left) and
multi-objectively (right) tuned models.

Figure 7. Overfit in terms of loss and macro AUC, calculated by
subtracting the validation value from the training value, averaged over all

down sample rates, and displayed for all epochs as single trajectories. In the
case of the loss, we normalized the training and validation values before

subtracting the latter from the former. The plots compare single-objectively
(left) and multi-objectively (right) tuned models.



a marginal role in the single objective search, while displaying a ten-
dency to be increased when considering performance and complex-
ity. Similarly, dropout gains importance when the number of data
points is decreased and it becomes more important to balance perfor-
mance and model complexity, in accordance with the reports made
by Brigato et al. [4].
We postulate that the superior performance of the state space model
and the convolutional neural network-based models arise due to their
inductive biases, specific for a given data type. This difference is no-
ticeable in the single-objective models depicted in the mid-column
of Figure 1, where the remaining models fall off quickly for higher
down sample rates. The ability of the state space model to capture
long-range signals [16] appears to be beneficial to classify electrocar-
diogram signals, as demonstrated on the original PTB-XL evaluation
[28]. Thus, one way of augmenting the inferior models would be to
expand their inductive biases, e.g., as proposed by Yin et al., who in-
troduce a convolutional bias into their transformer architecture [45].
We highlighted the importance of balancing performance and model
size by advocating for a multi-objective model selection when con-
fronted with limited yet high-dimensional and noisy data. Our exper-
iments demonstrated that the performance of our multi-objectively
models remains more stable when compared to single-objectively
tuned models, and are robust regarding overfit. Furthermore, we have
shown that, in low data regimes, a model’s complexity can be signif-
icantly reduced in low data regimes without sacrificing its perfor-
mance, as seen in Figure 5. When ready-made state-of-the-art mod-
els are not yet available in the corresponding literature, we propose
tuning the architectural and training hyperparameters of a model
from scratch, as it can result in a performance close to the best-
performing models in the respective domain, especially in lower data
set sizes. Albeit the accuracy may not be the best possible, the reduc-
tion in overfit is a strong argument in favor. Additionally, the result-
ing Pareto front allows for a case-sensitive model selection in which
we favor one objective over the other.
In certain cases, however, the Pareto front can have a sub-optimal
shape, resulting in a set of models forming a concave curve. By av-
eraging over these models, we obtain a new model that dominates
the set of Pareto optimal models [12], meaning that it performs bet-
ter in terms of performance while being of smaller complexity than
the models of the Pareto front found to be optimal. Concretely, this
means that if the Pareto front exhibits a concave shape, the over-
fit curves presented in Figure 6 overestimate the performance of the
models. This is confirmed by, by analyzing Figure 7, from which it is
evident that some model trajectories diverge stronger than the aver-
age, e.g., the transformer-based model. However, the ConvRFF and
S4 models are well-represented by their respective averages. Figures
19 and 21 of the Supplementary Information F display the overfit in
loss and macro AUC per down sample rate using single trajectories
and averages over each i = 1 . . .M with a 95% confidence interval
per model. Overall, our results indicate that the trajectories exhibit a
reduction in overfit, albeit with the possibility of degenerate cases.
Given the plethora of different hyperparameter settings, our work
only explored the tip of the iceberg, but nonetheless parameters that
are most relevant for model creation. However, we used efficient
search strategies to navigate the space of possible settings.
Lastly, we want to address why we have chosen to tune our models
on the entire validation set for every down sample rate instead of re-
ducing the amount of validation similar to the training data. With this
study, we want to reflect on the state of current deep learning methods
when faced with reduced data in a high-dimensional and noisy setting
in terms of capturing the true data distribution. While downsampling

the validation data would be tailored specific to a case, we chose
to emphasize the general capabilities of the deep learning methods
across limited data samples. Using the entire validation data allows
us to optimize the models according to the true data distributions and
thus gives a better reflection of the model performances for low data
regimes.

6 Conclusion
In this study, we have analyzed the current state of deep learn-
ing methods in limited, high-dimensional, and noisy data settings.
Specifically, we have introduced a novel approach that allows to in-
vestigate models when reducing the data in a systematic manner. Fur-
thermore, we have extensively searched the space of architectural and
training hyperparameters using single-objective and multi-objective
search. Our experiments revealed the importance of model selec-
tion according to multi-objective criteria to yield well-tuned mod-
els, competitive with state of the art methods. Moreover, we demon-
strated impact of the inductive bias of a model in limited, high-
dimensional and noisy data sets.
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Appendices
A Hyperparameters Settings
In the following, we list the training and the architectural hyperpa-
rameters considered during our model tuning.

A.1 Training Hyperparameters Settings

The training hyperparameters contain the learning rate, weight decay,
and batch size. We use either a randomly uniformed value from a
range of values, denoted as (·), or a sample from a list of values,
denoted as [·]:

• learning rate: (1e− 5, 1e− 1)
• weight decay: (1e− 5, 1e− 1)
• batch size: [22, 23, 24, 25, 26, 27]

A.2 Architectural Hyperparameters Settings

The architectural hyperparameters consist of hyperparameters spec-
ifying the depth and width of a neural network layer. Further, they
include the activation function, dropout, and other hyperparameters
that may be specific to certain architectural types. Similar to the train-
ing hyperparameters, we use either a randomly uniformed value from
a range of values or a sample from a list of values. We set architec-
tural hyperparameters such that each model’s size complies with the
memory provided by one NVIDIA A100 or P100 GPU. If we sample
an architecture that overshoots this requirement, its trial is declared
invalid.

A.2.1 CNN

The CNN architecture contains hyperparameters specifying the con-
volutional, normalization, and pooling layers. Furthermore, the final
classification head receives either the averaged feature dimensions as
input or the original output of the last convolutional layer.

• Number of layers: [1, 2, 3, 4, 5]
• Feature Sizes: [22, 23, 24, 25, 26, 27, 28]
• Kernel Sizes: [3, 5, 7]
• Padding: [0, 1]
• Strides: [1, 2]
• Pooling Function: [AV G,MAX,None]
• Normalization: [BatchNorm,LayerNorm,None]
• Activation Function: [RELU,GELU,ELU ]
• Global Pooling: [True, False]
• Dropout: (0.0, 0.75)

A.2.2 LSTM

The LSTM’s architecture determines the setup for each of the LSTM-
specific layers.

• Number of layers: [1, 2, 3, 4, 5]
• Hidden Size: [21, 22, 23, 24, 25, 26, 27, 28, 29]
• LSTM bias: [True, False]
• LSTM bidirectional: [True, False]
• Activation Function: [RELU,GELU,ELU ]
• Normalization: [BatchNorm,LayerNorm,None]
• Dropout: (0.0, 0.75)

A.2.3 Transformer Encoder

As before, the transformer encoder’s architectural hyperparameters
determine its layer-specific settings. Before passing the input to the
final classification layer, the input is either pooled via Self Attention
Pooling, Adaptive Pooling, or passed through linearly.

• Number of layers: [1, 2, 3, 4, 5]
• Hidden Size: [21, 22, 23, 24, 25, 26, 27, 28, 29]
• Number of Heads: [1, 2, 4, 8]
• Classification Layer: [SelfAttentionPooling,

AdaptiveConcatPooling,None]
• Dropout: (0.0, 0.75)

A.2.4 State Space Model (S4)

We define the architecture of the S4 [16] as the number of layers, the
sizes of each layer, and the number of hidden states. Further, it may
or may not be bidirectional.

• Number of layers: [1, 2, 3, 4, 5]
• Hidden Size: [21, 22, 23, 24, 25, 26, 27, 28, 29]
• Number of Hidden States: [21, 22, 23, 24, 25, 26, 27, 28, 29]
• S4 bidirectional: [True, False]
• Normalization: [BatchNorm,LayerNorm,None]
• Dropout: (0.0, 0.75)

A.2.5 Convolutional RFF

Here, we list the hyperparameters of the convolutional RFF [42]. The
architectural choices are similar to those of the CNN except for the
activation functions and the RFF-specific MC samples.

• Number of layers: [1, 2, 3, 4, 5]
• Kernel: [RBF,ARCCOS]
• Number of MC samples: [1, 5, 10, 15, 20]
• Feature Sizes: [21, 22, 23, 24, 25, 26, 27, 28, 29]
• Global Pooling: [True, False]
• Kernel Sizes: [3, 5, 7]
• Padding: [0, 1]
• Strides: [1, 2]

B Experimental Setup

We implement the experiments using PyTorch [33] and PyTorch
Lightning [11]. We use RayTune [27] to implement ASHA and Op-
tuna [1] for the MTPE. Our tuning is setup such that each sample of
architectural or training hyperparameters constitutes a trial. An ex-
periment consists of 100 trials per model, both SOTA, and Base, for
each Di

δ . We run each trial for 10 epochs and fix M = 5 to report
the mean and variances per model and per down sample rate. After
completing the tuning, we select the best hyperparameter according
to their respective performances in the single objective optimization
and every model that is part of the Pareto front for the multi objec-
tive search. We then train each of the best-performing models for 100
epochs. Subsequently, the models are tested on the complete testing
data as we judge its quality to capture the underlying data distribu-
tion. All experiments (training, tuning and testing) are run on Nvidia
A100 and P100 GPUs.



Figure 8. Pareto front of a S4 trained on T 2
0.99 while being optimized for performance and complexity.

Figure 9. Pareto front of a ConvRFF trained on T 1
0.8 while being optimized for performance and complexity.



C Pareto Front

Figures 8 and 9 show two Pareto fronts resulting from tuning a S4
model and a ConvRFF model on T 2

0.99 and T 1
0.8 respectively. Com-

pared to Figure 4 the two searches returned a Pareto front that is
much less elaborated resulting in only a few proposals.

D Compression vs. Performance

We display the model size (in MB) and the performance as mea-
sured in macro AUC for δ = {0.0, 0.4, 0.8, 0.9, 0.99} in Figures
10-fig:size-vs-score-ap5. We can see that for all models, the com-
plexity can be reduced without loosing drastically in performance.

Figure 10. Size vs. performance of fully trained models after being
optimized on T i

0.0 for performance and complexity simultaneously.
Displayed for all i = 1 . . . 5.

E Training Hyperparameters

Next, we investigate the role of the training hyperparameters. For
this, we plot the mean and standard deviation of every training hy-
perparameter across all down sample rates. Figures 15-17 show the
role of each hyperparameter in each setting, separated by model and
search strategies.

F Overfit

In this section, we display the overfit as measured by the difference
between training and validation loss and macro AUC for all models
across every down sample rate. The result can be seen in Figure 18
and Figure 20. Further, we display single trajectories in Figure 21
and Figure 21.

Figure 11. Size vs. performance of fully trained models after being
optimized on T i

0.4 for performance and complexity simultaneously.
Displayed for all i = 1 . . . 5.

Figure 12. Size vs. performance of fully trained models after being
optimized on T i

0.8 for performance and complexity simultaneously.
Displayed for all i = 1 . . . 5.



Figure 13. Size vs. performance of fully trained models after being
optimized on T i

0.9 for performance and complexity simultaneously.
Displayed for all i = 1 . . . 5.

G Class Performance
We study the performance of our models for each given class. Specif-
ically, we focus on the case when only one percent of the data is
available (see Figure 22-24). All models capture most of the classes
correctly, even though the sample size for each label is severely low-
ered. Some, such as the ConvRFF tuned via the single-objective
criterion, neglect one class in particular for which it may not have
seen any data samples during training. In the case of the Base mod-
els tuned via both the single- and the multi-objective criterion, only
the CNN performs better in the single-objective case. Especially the
best performing SOTA model S4 fails to predict six classes on av-
erage by eliciting a performance less than 50%, whereas its multi-
objectively tuned counterpart only neglects two classes. The overall
best-performing model S4 significantly lowers class neglect in the
multi-objective case by only missing two classes compared to five
and six for the untuned and single-objective case.

Figure 14. Size vs. performance of fully trained models after being
optimized on T i

0.99 for performance and complexity simultaneously.
Displayed for all i = 1 . . . 5.



Figure 15. The training hyperparameters found by the single-objective hyperparameter tuning of the SOTA models using Asynchronous Successive Halving
Algorithm. The hyperparameters depicted from left to right are the learning rate, weight decay, and batch size.

Figure 16. The training hyperparameters found by the single-objective hyperparameter tuning of the Basic models using Asynchronous Successive Halving
Algorithm. The hyperparameters depicted from left to right are the learning rate, weight decay, batch size, and dropout.

Figure 17. The training hyperparameters found by the multi-objective hyperparameter tuning of the Basic models using Multiobjective Tree Parsen
Estimator. The hyperparameters depicted from left to right are the learning rate, weight decay, batch size, and dropout.



Figure 18. Overfit as measured by subtracting the normalized validation loss from the normalized training loss, for each down sample rate. From left to right
the SOTA models, single-objective Basic models split into retuned SOTA Models (middle left) and tuned Base Models (middle right), and multi-objective

Basic models are shown. We display the average trajectories with 95% confidence intervals.



Figure 19. Overfit as measured by subtracting the normalized validation loss from the normalized training loss, for each down sample rate. From left to right
the SOTA models, single-objective Basic models split into retuned SOTA Models (middle left) and tuned Base Models (middle right), and multi-objective

Basic models are shown. We display single trajectories.



Figure 20. Overfit as measured by subtracting the validation macro AUC from the training macro AUC, for each down sample rate. From left to right the
SOTA models, single-objective Basic models split into retuned SOTA Models (middle left) and tuned Base Models (middle right), and multi-objective Basic

models are shown. We display the average trajectories with 95% confidence intervals.



Figure 21. Overfit as measured by subtracting the validation macro AUC from the training macro AUC, for each down sample rate. From left to right the
SOTA models, single-objective Basic models split into retuned SOTA Models (middle left) and tuned Base Models (middle right), and multi-objective Basic

models are shown. We display single trajectories.



Figure 22. Performance per label for untuned SOTA models for a down sample rate of 99%.



Figure 23. Performance per label tuned by the single-objective ASHA for a down sample rate of 99%.



Figure 24. Performance per label tuned by the multi-objective TPE for a down sample rate of 99%.


