
Controller Synthesis from
Deep Reinforcement Learning Policies

Florent Delgrangea,b, Guy Avnic, Anna Lukinad, Christian Schillinge, Ann Nowéa and Guillermo A. Pérezb,f

aVrije Universiteit Brussel, Belgium, bUniversity of Antwerp, Belgium, cUniversity of Haifa, Israel,
dDelft University of Technology, The Netherlands, eAalborg University, Denmark, fFlanders Make, Belgium

Abstract. We propose a novel framework to controller design in
environments with a two-level structure: a high-level graph in which
each vertex is populated by a Markov decision process, called a
“room”, with several low-level objectives. We proceed as follows.
First, we apply deep reinforcement learning (DRL) to obtain low-
level policies for each room and objective. Second, we apply reac-
tive synthesis to obtain a planner that selects which low-level policy
to apply in each room. Reactive synthesis refers to constructing a
planner for a given model of the environment that satisfies a given
objective (typically specified as a temporal logic formula) by design.
The main advantage of the framework is formal guarantees. In ad-
dition, the framework enables a “separation of concerns”: low-level
tasks are addressed using DRL, which enables scaling to large rooms
of unknown dynamics, reward engineering is only done locally, and
policies can be reused, whereas users can specify high-level tasks in-
tuitively and naturally. The central challenge in synthesis is the need
for a model of the rooms. We address this challenge by develop-
ing a DRL procedure to train concise “latent” policies together with
latent abstract rooms, both paired with probably approximately cor-
rect (PAC) guarantees on performance and abstraction quality. Un-
like previous approaches, this circumvents a model distillation step.
We demonstrate feasibility in a case study involving agent navigation
in an environment with moving obstacles.

1 Introduction
We consider the fundamental problem of constructing control
policies for environments modeled as Markov decision processes
(MDPs) with formal guarantees. We suggest a framework that com-
bines two techniques with complementary benefits and drawbacks,
which we describe next.

The first technique is reinforcement learning (RL) in which the
designer chooses how rewards are issued, and control policies are
trained to optimize rewards. In particular, deep RL (DRL, e.g., [42])
is successful in domains of high-dimensional feature spaces with un-
known dynamics, often surpassing human capabilities. On the down-
side, designing a reward function is a challenging engineering task in
which the designer needs to both train the agent to exhibit desired be-
havior and train it efficiently. Specifically, for long-term objectives,
one needs to deal with the notorious problem of sparse rewards [37]
by guiding the agent to the intended behavior [40]. This in turn, adds
more problems as the “desired behavior” is specified via rewards,
and reward engineering can lead to behavior that may not align with
the user’s intentions.

The second technique is reactive synthesis [47], which constructs

an optimal policy based on a model of the environment and objectives
specified as a logical formula. In contrast to DRL, synthesis provides
guarantees that the policy satisfies the specification and allows users
an intuitive and natural specification languages. The reliance on an
explicit model of the environment is its key disadvantage; the tech-
nique struggles with scalability and domains in which dynamics are
partially known.

We propose a framework that aims to gain the best of both worlds.
We require minimal prior knowledge of the structure of the environ-
ment: the input is a map given as a graph, where each vertex is pop-
ulated by an (unknown) room, modeled as an MDP. We argue that
this is a natural requirement in many domains. Think of a robot that
needs to deliver a package in a warehouse divided into rooms amid
moving obstacles (e.g., forklifts, workers, or other robots). While it
is infeasible to provide a model describing all the possible interac-
tions the agent may have within the warehouse and the dynamics of
the moving obstacles, one can reasonably assume a map is provided.

Our framework proceeds as follows. We first train multiple DRL
policies to achieve short-horizon, low-level objectives in the rooms,
e.g., act safely and exit a room via a designated target (Fig. 1). We
then construct a high-level planner whose task is to choose which
policy acts in a room: based on the low-level policies and the given
map, we apply synthesis to achieve a long-horizon objective, e.g.,
reach the target location (Fig. 2). A key challenge is to obtain an
environment model for synthesis; namely, a model of the operation of
the low-level policies. We develop a novel DRL procedure that learns
a latent model of each room, where the satisfaction of the low-level
objective can be formally verified.

Contributions

To summarize, we present in this paper a novel framework
that incorporates DRL into the synthesis process, which offers
the following key advantages. First and foremost, it provides
guarantees on the operation of the controller. As mentioned,
it enjoys the best of both worlds: it enables synthesis with the-
oretical guarantees in large partially-known environments. It
allows a “separation of concerns”: reward engineering is only
done locally while high-level tasks are given in an intuitive
specification language. In addition, it offers a remedy for the
notorious challenges of sparse rewards in RL. Interestingly, it
also enables reusability: the policies in rooms and their guar-
antees are reusable across similar rooms and when the high-
level task or structure change.

Latent AbstractionReinforcement Learning

Latent
Model

action

next latent

observation

+

π
Latent
Policy

state

abstraction

Room

Figure 1: The agent is trained to exit each room, in every possible di-
rection. The training is done in parallel simulations where an abstrac-
tion of the environment is learned via NNs, yielding a latent model
for each room. Simultaneously, a policy is learned via DRL on the
learned latent representation, which guarantees the agent’s low-level
behavior conformity through PAC bounds. More details in Sect. 5.

We stress that, while our approach naturally fits the given exam-
ple, it is not limited to such navigation scenarios. Others include
probabilistic programs (e.g., network protocols and job scheduling,
[33]), systems that can be formalized as string diagrams (e.g., dice
games, [61]), and more general software systems relying on libraries
of reusable components such as drivers in an operating system [53].
Notably, our approach can be seen as post-hoc to hierarchical RL
[10], where the high-level structure is eventually learned and fixed,
but not yet the low-level components.

We complement our theoretical results with a case study which
illustrates the feasibility of the approach. We consider a domain of
parameterizable size in which an agent needs to reach a distant lo-
cation while avoiding moving adversarial obstacles with stochastic
dynamics. We show that DQN struggles to find a policy in our do-
main, even with reward shaping. In the rooms, we demonstrate our
novel procedure for training concise latent policies directly. We syn-
thesize a planner based on the latent policies and show the following
results. First, our high-level controller achieves high success proba-
bility, demonstrating that our approach overcomes the challenge of
sparse rewards. Second, the values predicted in the latent model are
close to those observed, demonstrating the quality of our automati-
cally constructed model. Third, we complement the latter with prob-
ably approximately correct (PAC) bounds on the abstraction quality.

2 Related Work
Multi-objective reasoning. The framework introduced in this pa-
per provides latent models and policies that allow to formally reason
about the behaviors of the agent. Real word systems are complex
and often involves multiple trade-offs between (possibly conflicting)
constraints, costs, rewards, and specifications. In fact, the willingness
to achieve sub-goals at the lower level of the environment while en-
suring that a set of safety requirements are met is a typical example
of a multi-objective problem. In essence, then, our problem involves
multiple objectives, not just at the same decision level, but in a multi-
level classification of decisions.

Our framework tackles one aspect of multi-objective decision
making, which we note is not standard: traditional methods [50, 1,

High-level Synthesis

construct a
that satisfies the specification

Specification

models/policies

high-level controller

Low-level latent

model (map)

Figure 2: Given (i) a high-level description of the environment, (ii) a
collection of low-level models and policies for each room, and (iii)
the low- and high-level specifications, synthesis outputs a high-level
controller guaranteed to satisfy the specifications. The challenge re-
sides in the way the low-level components are merged to apply syn-
thesis while maintaining their guarantees. More details on this non-
trivial problem in Sect. 6.

51, 28, 4, 13, 19, 20, 26, 15] involves the ability to reason about
the multiple trade-offs by conducting multi-objective analyses (e.g.,
generating the Pareto curve/set/frontier, embedding all the compro-
mises). In contrast, we focus on dealing and composing with the dif-
ferent objectives in order to satisfy the high-level specification.

We note that [61] consider multi-level environments while approx-
imating Pareto curves to deal with the compromises incurred by the
low-level tasks. However, the approach relies on a model and thus ex-
hibits tractability issues while being inapplicable when the dynamics
are not fully known. Furthermore, the formalization of our multi-
level environment is more permissive and allows to encode informa-
tion from neighboring rooms (e.g., obstacles or adversaries moving
between rooms), which also requires memory for the planner (see
Sect. 6 for more information on memory requirements).

Multi-level decision making. We compare with other approaches
to obtain high-level controllers. In hierarchical RL or the options
framework [57], the high-level component learns a policy over sub-
goals and a low-level component learns to achieve them. Both are
learned concurrently, while for us the map is given — our prob-
lem is post-hoc to learning the high-level component. Furthermore,
the reusability of our low-level components and the fact that the
choice of the low-level policy cannot be resolved in a Markovian
fashion (i.e., without memory; again, details are in Sect. 6) is a dis-
tinction from option-inspired approaches. Another recent approach
is the CLAPS algorithm [67] to learn low-level components with
correctness witnesses. However, CLAPS focuses on stochastic feed-
back loops, where both the transition function and the controller are
assumed Lipschitz continuous in the state space and respectively re-
stricted to re-parameterizable distributions and deterministic, station-
ary policies. In contrast, we consider MDPs with (intractable) finite
spaces and general policies. Moreover, the low-level components of
CLAPS are not related to the high-level structure of the environment
but rather to the considered logical specification.

Formal reasoning. The key challenge in planner synthesis is to
obtain a ranking criterion, i.e., an estimate on the policy’s success
probability. DRL outputs a neural network (NN), which is too large
to incorporate in a synthesis procedure ([34]), and we assume no
knowledge of transition probabilities in rooms (rather, only simu-
lator access). Our approach draws from the common framework of
training an NN, distilling [30] a concise latent model, and applying
formal reasoning to the latent model [18, 3, 16, 11]. Note that the lat-

ter only gives guarantees if distillation provides error bounds on the
abstraction induced by the latent model. In contrast, our method is
of independent interest and trains a latent policy directly, thereby cir-
cumventing the need for model distillation; it outputs a latent MDP
together with a mapping from concrete environment states to ab-
stracted states, and PAC guarantees on the latent policy value. We
stress that the abstraction is learned, unlike in works of [52, 32].

This work is concerned with reach-avoid objectives in RL. Such
objectives can be specified in linear temporal logic (LTL). While
hierarchical RL is a notoriously difficult problem [36], LTL objec-
tives add intractability [64] and only allow for PAC guarantees if the
MDP structure is known [21]. Besides the mentioned work of [67],
high-level controllers are used in recent works such as combining
a planner with a low-level learned policy and a safety shield [63];
however, the ad-hoc integration of the learned component does not
provide guarantees. Moreover, [44] obtain low-level controllers via
reactive synthesis, which does not scale to complex scenarios. Re-
garding safety objectives, RL remains intractable [6]. For guaranteed
safety, one can synthesize a shield that blocks unsafe actions [5, 35].
In our setting, we would need shields for the low-level policies; con-
structing them would require full access to the rooms’ models (which
are too large). Approaches encouraging but not ensuring safety use
constrained policy optimization [2], safe padding in small steps [27],
time-bounded safety [24], safety-augmented MDPs [56], differen-
tiable probabilistic logic [65], or distribution sampling [7].

3 Preliminaries

Markov Decision Processes. Let ∆(X) denote the set of dis-
tributions on X . An MDP is a tuple M = ⟨S,A,P, I⟩ with
states S, actions A, transition function P : S × A → ∆(S), and
initial distribution I ∈ ∆(S). A policy π : S → ∆(A) gives rise
to a distribution over paths of M, denoted by PrMπ . The proba-
bility of finite paths is defined inductively. Trivial paths s ∈ S
have probability PrMπ (s) = I(s). Paths ρ = s0, s1, . . . , sn have
probability PrMπ (s0, s1, . . . , sn−1) · Ea∼π(·|sn−1)P(sn | sn−1, a).

Let ξnπ (s′|s) = Pρ∼PrMπ
[ρ ∈ {s0, . . . , sn|sn = s′} | s0 = s] denote

the probability of visiting of s′ after n steps starting from s. Under
policy π, C ⊆ S is a bottom strongly connected component (BSCC)
ofM if (i) C is a maximal subset satisfying ξnπ (s

′ | s) > 0 for any
s, s′ ∈ C and some n ≥ 0 and (ii) Ea∼π(·|s)P(C | s, a) = 1 for
all s ∈ S. MDPM is ergodic if, under any stationary policy π, the
reachable states {s ∈ S | ∃n ≥ 0,Es0∼I ξ

n
π (s | s0) > 0} consist of

a unique aperiodic BSCC. Then, for s ∈ S, ξπ = limn→∞ ξnπ (· | s)
is the stationary distribution ofM under π. We write s, a ∼ ξπ for
the distribution over S×A obtained by sampling s from ξπ and then
sampling a from π(· | s).
Objectives and values. A qualitative objective is a set of infinite
paths O ⊆ Sω . For B, T ⊆ S, we consider reach-avoid objec-
tives O(T,B) = {s0, s1, . . . | ∃i. si ∈ T and ∀j ≤ i, sj /∈ B}
(or just O if clear from context) where the goal is to reach a
“target” in T while avoiding the “bad” states B. Henceforth,
fix a discount factor γ ∈ (0, 1). In this work, we consider dis-
counted value functions (see, e.g., [14]). The value of any state
s ∈ S for policy π w.r.t. objective O is denoted by V π(s,O) and
corresponds to the probability of satisfying O from state s as γ
goes to one, i.e., limγ→1 V

π(s,O) = Pρ∼PrMπ
[ρ ∈ O | s0 = s].

In particular, for the reach-avoid objective O(T,B), V π(s,O)
corresponds to the discounted probability of visiting T
for the first time while avoiding B, i.e., V π(s,O) =

Eρ∼PrMπ

[
supi≥0 γ

i · 1 {si ∈ T ∧ ∀j ≤ i, sj ̸∈ B} | s0 = s
]
,

where si, sj are respectively the ith, j th state of ρ. We are particularly
interested in the values obtained from the beginning of the execution,
written V π

I (O) = Es0∼I [V
π(s0,O)]. We may sometimes omit O

and simply write V π and V π
I .

Reinforcement learning obtains a policy in a model-free way. Ex-
ecuting action ai in state si and transitioning to si+1 incurs a
reward ri = rew(si, ai, si+1), computed via a reward function
rew : S × A × S → R. An RL agent’s goal is to learn a policy π∗

maximizing the return Eρ∼PrM
π∗

[∑
i≥0 γ

iri
]
. The agent is trained

by interacting with the environment in episodic simulations, each
ending in one of three ways: success, failure, or an eventual reset.

4 Problem Formulation

In this section, we formally model a two-level environment and
state the problem of high-level controller synthesis. The environment
MDP is given by a high-level map: an undirected graph whose ver-
tices are associated with “low-level” MDPs called rooms (Fig. 3(a)).
A high-level controller consists of two components and operates as
follows. In each room, we assume access to a set of low-level poli-
cies, each optimizing a local (room) reach-avoid objective (Fig. 3(b)).
When transitioning to a new room, a high-level planner selects the
next low-level policy.

Two-level model. A room R = ⟨SR,AR,PR, DR, IR,OR⟩ con-
sists of SR, AR, PR as in an MDP, a set of directions DR, an en-
trance function IR : DR → ∆(SR) taking a direction from which
the room is entered and producing an initial distribution over states,
and an exit function OR : DR → 2SR returning a set of exit states
from the room in a given direction d ∈ DR. States are assigned to at
most one exit, i.e., if s ∈ OR(d) and s ∈ OR(d

′), then d′ = d.

Example 1 (Room). Consider the grid world of the left figure as a
room R populated by an adversary whose position is encoded in

IR(· |→)

OR(→)

SR and behavior in PR. The posi-
tion of depends on the direction
from which the agent enters R.
The agent enters from the left in
direction→ to the states of R dis-
tributed according to the entrance
function IR(· | d =→) (the tiling

patterns highlight its support). Precisely, while the agent is sent
(in a deterministic way) to the leftmost cell (yellow tiling), IR al-
lows to (probabilistically) model the possible positions of when
entering the room (red tiling) from direction d =→. When reaching
the green area, depicting states fromOR(→), exits R by the right
direction→.

A map is a graph G = ⟨V, E⟩ with vertices V and undirected
edges E ⊆ V × V , the neighbors of v ∈ V are N(v) =
{u ∈ V | ⟨u, v⟩ ∈ E} and the outgoing edges from v are out(v) =
{e = ⟨v, u⟩ ∈ E}. A two-level model H = ⟨G,R, ℓ, v0, ⟨d0, d1⟩⟩
consists of a map G = ⟨V, E⟩, a set of roomsR, a labeling ℓ : V →
R of each vertex v ∈ V with a room ℓ(v) and directions Dℓ(v) =
out(v), an initial room v0 ∈ V , and directions d0, d1 ∈ out(v0) in
which v0 is respectively entered and must be exited.

Fix a two-level model H = ⟨G,R, ℓ, v0, ⟨d0, d1⟩⟩. The explicit
MDPM corresponding to H is obtained by, intuitively, “stitching”
MDPs R ∈ R corresponding to neighboring rooms (Fig. 3(a)). For-
mally,M = ⟨S,A,P, I⟩, where S =

{
⟨s, v⟩ : s ∈ Sℓ(v), v ∈ V

}
,

s1,v0

s3,v0

s1, u s2, u

s0, u

d0 =→

R0 R1
aexit

M

win

aexit
s0,v0

s2,v0 s3, u

s0, u
′

v0 d1 = ⟨v0, u⟩
G

ℓ(v0) = R0

u
d2 = ⟨u, u′⟩ u′

(a) A two-level model of a simple grid world environment.

v3

u

π↓

π→

π→

π↑

Bℓ(u)

v2

Oℓ(u)(→)v1

s2

s1

s3

(b) A two-level model for which an optimal plan-
ner requires memory, here flattened in 2D.

Figure 3: (a) Top: The high-level graph G with two rooms R0 = ℓ(v0) and R1 = ℓ(u). Middle: Part of the explicit MDP for the bottom
layer; e.g., the MDP R0 contains 16 states. Traversing the edge ⟨⟨s2, v0⟩, ⟨s0, u⟩⟩ corresponds to exiting R0 and entering R1 from direction
d1 = ⟨v0, u⟩. The goal of is to reach u′ by exiting the room R1 from direction d2 = ⟨u, u′⟩ while avoiding the moving adversaries . For
i ∈ {0, 1}, the entrance function IRi models the distribution from which the initial location of in Ri is drawn. (b) A room with four policies
for a planner to choose from; e.g., π→(· | s1) leads to Bℓ(u) and π↑(· | s1) leads to s3. Note that while these are deterministic policies, in
general the policies in rooms are probabilistic.

A =
⋃

R∈RAR ∪ {aexit}. The initial distribution I simulates start-
ing in room ℓ(v0) from direction d0; thus, for each s ∈ Sℓ(v0),
I(⟨s, v0⟩) = Iℓ(v0)(s | d0). The transitions P coincide with PR

for non-exit states. Let d = ⟨v, u⟩ ∈ E with v ∈ N(u); OR(d)
are the exit states in room R associated with v in direction d, and
Iℓ(u)(· | d) is the entrance distribution in the room associated with u
in direction d. The successor state of s ∈ OR(d) follows Iℓ(u)(· | d)
when aexit is chosen. Each path ρ in M corresponds to a unique
path(ρ) in G traversing the rooms.

High-level reach and low-level reach-avoid objectives. The high-
level reachability objective we consider is ♢T , where T ⊆ V is a
subset of vertices in the graph of H. A path ρ in M satisfies ♢T
iff path(ρ) visits a vertex v in T . The low-level safety objective is
defined over states of the rooms inR. For each room R, let BR ⊆ SR
be a set of “bad” states. For room R and direction d ∈ DR, define
the reach-avoid objective Od

R ∈ S∗
R as {s0, . . . , sn | sn ∈ OR(d)

and si /∈ BR for all i ≤ n}, i.e., exit R via d avoiding BR.

High-level control. We define a planner τ : V∗ → E and a set of
low-level policies Π such that, for each room R ∈ R and a di-
rection d ∈ DR, Π contains a policy πR,d for the objective Od

R.
The pair π = ⟨τ,Π⟩ is a high-level controller for H, defined in-
ductively as follows. Consider the initial vertex v0 ∈ V (Fig. 3(a)).
Let d0 = τ(ϵ) ∈ out(v0) (ϵ being the empty sequence). Control
in ℓ(v0) proceeds according to πℓ(v0),d1 . Let ρ be a path inH ending
in s ∈ SR, for some room R = ℓ(v). If s is not an exit state of R,
then control proceeds according to a policy πR,d with d = ⟨v, u⟩
and u ∈ N(v). If s is an exit state in direction d and path(ρ) ends
in v, i.e., s ∈ OR(d), then aexit is taken in s and the next state is an
initial state in R′ = ℓ(u) drawn from IR′(d). The planner chooses
a direction d′ = τ(path(ρ) · u) ∈ out(u) to exit R′. Control of R′

proceeds with the low-level policy πR′,d′ . Note that π is a policy in
the explicit MDPM.

Problem 1. Given a two-level model H = ⟨G,R, ℓ, v0, ⟨d0, d1⟩⟩,
discount factor γ ∈ (0, 1), high-level objective ♢T , and low-level
reach-avoid objectives {Od

R | R ∈ R, d ∈ DR}, construct a high-
level controller π = ⟨τ,Π⟩ maximizing the probability of satisfying
the objectives.

5 Obtaining Low-Level Policies via DRL

There are fundamental challenges in reasoning about policies ob-
tained by DRL, which are typically represented by large NNs. We
develop a novel unified DRL procedure which outputs a latent model
together with a concise policy accompanied by probably approxi-
mately correct (PAC) guarantees. We first focus on those guarantees.
Proofs of our claims are in Appendix B.

5.1 Quantifying the quality of the abstraction

Throughout this section, we fix an MDP environment M =
⟨S,A,P, I⟩. A latent model abstracts a concrete MDP and is itself
an MDPM = ⟨S,A,P, I⟩ whose state space is linked toM via a
state-embedding function ϕ : S → S. We focus on latent MDPs with
a finite state space.

Let π be a policy inM, called a latent policy. The key feature is
that ϕ allows to controlM using π: for each state s ∈ S, let π(· | s)
inM follow the distribution π(· | ϕ(s)) inM. Abusing notation, we
refer to π as a policy inM. We write V π for the value function of
M operating under π.

GivenM and π, we bound the difference between V π and V π; the
smaller the difference, the more accurately M abstracts M. Com-
puting V π is intractable. To overcome this, in the same spirit as
[22, 16], we define a local measure on the transitions ofM andM to
bound the difference between the values obtained under π (cf. Fig. 4).
We define the transition loss Lπ

P w.r.t. a distance metric D on dis-
tributions over S. We focus on the total variation distance (TV)
D(P, P ′) = 1/2 ∥P − P ′∥1 for P, P ′ ∈ ∆

(
S
)
. We compute Lπ

P

by taking the expectation according to the stationary distribution ξπ:

Lπ
P = Es∼ξπ,a∼π(·|s) D

(
ϕP(· | s, a),P(· | ϕ(s), a)

)
. (1)

The superscript is omitted when clear from the context. Efficiently
sampling from the stationary distribution can be done via randomized
algorithms, even for unknown probabilities [41, 48].

Recall that RL is episodic, terminating when the objective is satis-
fied/violated or via a reset. We thus restrictM to an episodic process,
which implies ergodicity of bothM andM under mild conditions
(cf. [31] for a discussion).

s s

a a

s′ s2s1

M Mϕ

π

P P
ϕ

Figure 4: To run π in the original en-
vironment M, (i) map s to ϕ(s) =
s, (ii) draw a ∼ π(· | s). LP mea-
sures the gap (in red) between la-
tent states produced via s1 = ϕ(s′)
with s′ ∼ P(· | s, a) (shortened as
s1 ∼ ϕP(· | s, a)) and those pro-
duced directly in the latent space:
s2 ∼ P(· | s, a).

Assumption 1 (Episodic process). The environment M has a re-
set state sreset such that (i) sreset is almost surely visited under
any policy, and (ii) M follows the initial distribution once reset:
P(· | sreset, a) = I for any a ∈ A. The latent model M is also
episodic with reset state ϕ(sreset).

Assumption 2. The abstraction does not lose information regarding
the objectives. Formally, let ⟨T, T ⟩, ⟨B,B⟩ ⊆ S × S be sets of
target and bad states, respectively. Then, for X ∈ {T,B}, s ∈ X iff
ϕ(s) ∈ X .1 We consider the objective O(T,B) inM and O

(
T ,B

)
inM.

The following lemma establishes a bound on the difference in values
based on LP. Notably, as LP goes to zero, the two models almost
surely have the same values from every state.

Lemma 1 ([16]). Let π be a latent policy and ξπ be the unique sta-
tionary measure ofM, then the average value difference is bounded
by LP: Es∼ξπ

∣∣V π(s)− V π(ϕ(s))
∣∣ ≤ γLP

1−γ
.

The next theorem provides a more transparent bound applicable
to the initial distribution, removing the need of the expectation in
Lem. 1. The proof follows from plugging the stationary distribu-
tion in sreset into Lem. 1 and observing that 1/ξπ(sreset) is the average
episode length [55].

Theorem 1. The value difference from the initial states is bounded
by LP:

∣∣V π
I − V π

I

∣∣ ≤ LP
ξπ(sreset)(1−γ)

.

5.2 PAC estimates of the abstraction quality

Thm. 1 establishes a bound on the quality of the abstraction based
on LP and ξπ(sreset). Computing these quantities, however, is not
possible in practice since the transition probabilities of M are un-
known, and even if they were known, the expectation over S deems
the computation infeasible.

Instead, we obtain PAC bounds on ξπ(sreset) and LP by simulat-
ing M. The estimate of ξπ(sreset) is obtained by taking the portion
of visits to sreset in a simulation and Hoeffding’s inequality. The esti-
mate of LP is obtained as follows. When the simulation goes from s
to s′ following action a, we add a “reward” of P(ϕ(s′) | ϕ(s), a).
Since LP is a loss, we subtract the average reward from 1.

Lemma 2. Let {⟨st, at, s
′
t⟩ : 1 ≤ t ≤ T } be a set of

T transitions drawn from ξπ by simulating Mπ . Let
L̂P = 1 − 1/T

∑T
t=1 P(ϕ(s′t) | ϕ(st), at) and ξ̂reset =

1/T
∑T

t=0 1 {st = sreset} . Then, for all ε, δ > 0 and
T ≥ ⌈− log(ζ)/2ε2⌉, with at least probability 1 − δ we have
that

(i) if ζ ≤ δ, L̂P + ε > LP,
(ii) if ζ ≤ δ/2, L̂P + ε > LP and ξπ(sreset) > ξ̂reset − ε.

1 This is easily met by labeling states with atomic propositions, as standard
practice in model checking [16].

The following theorem has two key implications: (i) it establishes
a lower bound on the minimum number of samples necessary to cal-
culate the PAC upper bound for the average value difference; (ii) it
suggests an online algorithm with a termination criterion for the
value difference bound.

Theorem 2 (The value bounds are PAC learnable). Let
{⟨st, at, s

′
t⟩ : 1 ≤ t ≤ T } be T transitions drawn from ξπ by

simulatingM under π. Then, for any ε, δ > 0, T ≥
⌈

−γ′ log(δ′)
2ε2(1−γ)2ζ

⌉
,

with at least probability 1− δ, we have that

(i) Es∼ξπ

∣∣V π(s)− V π(ϕ(s))
∣∣ ≤ γL̂P

1−γ
+ ε with δ′ = δ, γ′ = γ2,

and ζ = 1, and
(ii)

∣∣V π
I − V π

I

∣∣ ≤ L̂P

ξ̂reset (1−γ)
+ ε with δ′ = δ/2,

γ′ = (L̂P + ξ̂reset(1 + ε(1− γ)))2, and ζ = ξ̂ 4
reset.

Unlike (i), which enables precomputing the required number of
samples to estimate the bound, (ii) allows estimating it with a prob-
abilistic algorithm, almost surely terminating but without predeter-
mined endpoint since T relies in that case on the current approxima-
tions of LP and ξπ .

5.3 Obtaining latent policies during training

We introduce a DRL procedure that trains a latent MDP and policy si-
multaneously. Previous approaches followed a two-step process: first
train a policy π in M, then distill π. In contrast, our approach is
a one-step process that alternates in a round robin fashion between
optimizing a latent policy π via DQN [43] and representation learn-
ing via Wasserstein auto-encoded MDPs (WAE-MDPs, [17]). WAE-
MDPs is a technique that learns M and ϕ via NNs by distilling a
DRL policy into a latent policy π and minimizing LP, thus enjoying
the guarantees developed in this section. Our approach bypasses the
distillation step by directly learning π via DQN, which is optimized
on the latent space learned (cf. Fig. 1). We call the resulting proce-
dure WAE-DQN. The combination of the techniques is nontrivial and
need be carefully addressed to avoid stability issues; details are in
Appendix C. To summarize, we point to properties of WAE-DQN:
(i) ϕ is ensured to group states with close values, easing the learning
of π; (ii) π prescribes the same actions for states with close behav-
iors, thus enhancing its robustness and enabling the use of the same
latent space for different rooms with similar structure.

6 Obtaining a Planner
Fix Π as a collection of low-level, latent policies. In this section, we
show that synthesizing a planner reduces to constructing a policy in
a succinct model, where the action space coincides with the edges
of the map G (i.e., the choices of the planner). In the following, we
describe the chain of reductions leading to this result. An overview is
given in Fig. 5. We further discuss the memory requirements of the
planner. Precisely, we study the following problem:

Problem 2. Given a two-level model H, a collection of latent poli-
cies Π, and an objective O, construct a planner τ such that the con-
troller ⟨τ,Π⟩ is optimal for O inH.

Memory bounds. Observe that planners require memory:

Example 2. Consider again Fig. 3(b). To reach v3 and avoid Bℓ(u)

from u, τ must remember from where the room ℓ(u) is entered: τ
must choose ↑ from v1, and→ from v2.

H
τ : V∗ → D

M
Two-level model Explicit MDP

τ : V × V → D

⟨s, v⟩
State space features: state s in room R = ℓ(v);

MΠ

MDP Plan

⟨s, v, u⟩
state s, room R = ℓ(v), target d = ⟨v, u⟩;

τ : V × V → D
MG

Π

Succinct Model

⟨v, u⟩

Theorem 4fix Π⇝ Theorem 3

R = ℓ(u) entered from d = ⟨v, u⟩;

Figure 5: Chain of reductions for synthesizing a planner τ in a two-level model H. H can be formulated as an explicit MDP M. Once the
low-level policies Π are learned (Fig. 1), the synthesis problem reduces to constructing a stationary policy in an MDP planMΠ where Π is
fixed and the state space ofMΠ encodes the directions chosen in each room. From this policy, one can derive a |V|-memory planner τ for
H (Thm. 3). Finally, finding a policy inMΠ is equivalent to finding a policy in a succinct modelMG

Π where (i) the state space corresponds
to the directions from which rooms are entered, (ii) the actions to the choices of the planner, and (iii) the transition probabilities to the values
achieved by the latent policy chosen (Thm. 4).

Next, we establish a bound on the memory required by an optimal
planner. Recall that upon entering a room R ∈ R, the planner needs
to choose a direction d ∈ E, implying that the policy that operates
in R is πR,d ∈ Π, which optimizes for the objective Od

R of exit-
ing R via d. We construct an MDP planMΠ = ⟨SΠ,AΠ,PΠ, IΠ⟩
that simulates this interaction. A state in SΠ is s∗ = ⟨s, v, u⟩ mean-
ing that H is in vertex v, the state in the room R = ℓ(v) is s, and
the policy that operates in R is πR,d=⟨v,u⟩. For non-exit states s,
the transition function PΠ(· | s∗) follows PR(· | s, a), where a ∼
πR,d(· | s); for exit states s, the planner chooses a direction d′ ∈
DR′ for the next room R′ = ℓ(u) and PΠ(· | s∗, d′) follows the
entrance function IR′(· | d) of R′ from direction d = ⟨v, u⟩. Con-
struction details are in Appendix D. An optimal stationary policy is
known to exist forMΠ [49], which can be implemented as a planner
memorizing the entry direction of a room. This requires memory of
size |V|, as decisions rely on the possible |V| preceding vertices.

Theorem 3. Given low-level policies Π, there is a |V|-memory plan-
ner τ maximizing O in H iff there is a deterministic stationary pol-
icy π⋆ maximizing O inMΠ.

Planner synthesis. As a first step, we construct a succinct MDP
MG

Π that preserves the value ofMΠ. States ofMG
Π are pairs ⟨v, u⟩

indicating room R = ℓ(u) is entered via direction d = ⟨v, u⟩. As
inMΠ, a planner selects an exit direction d′ = ⟨u, v′⟩ for R. We use
the following trick. Recall that we consider discounted properties;
when R is exited via direction d′ after j steps, the utility is γj . In
MG

Π, we set the probability of transitioning to v′ upon choosing d′

to the expected value achieved by policy πR,d′ in R. Precisely, let
MG

Π = ⟨S,A,P, I⟩ with S = E ∪ {⊥}, A = E, I(d0) = 1,

P(⟨u, t⟩|⟨v, u⟩, d) = Es∼Iℓ(u)(·|⟨v,u⟩)

[
V πℓ(u),d

(
s,Od

ℓ(u)

)]
(2)

and P(⊥ | ⟨v, u⟩, d) = 1−P(⟨u, t⟩ | ⟨v, u⟩, d) for any ⟨v, u⟩ ∈ E
with target direction d = ⟨u, t⟩ ∈ Dℓ(u), while P(⊥ | ⊥, d) = 1.
The sink state⊥ captures when low-level policies fail to satisfy their
objective.

Theorem 4. Let ⟨τ,Π⟩ be a |V |-memory controller for H and π be
an equivalent policy in MΠ, the values obtained under π for O in
MΠ are equal to those under τ obtained inMG

Π for the reachability
objective to states V × T .

We are ready to describe the algorithm to synthesize a planner.
Note that the values V πR,d in Eq. 2 are either unknown or computa-
tionally intractable. Instead, we leverage the latent model to evaluate
the latent value of each low-level objective using standard techniques

Figure 6: Uniform distribution IR (blue)
and entrance function IR (red: ↓,
green: ↑). Assume τ chooses → in R.
At training time, as IR is uniform,
each state is included in the support
of distribution of visited states ξπR,→ .
Yet under a high-level controller, R is
entered w.r.t. IR(· | d ∈ {↓, ↑}). To exit
on the right, all states need not be visited
under πR,→ so the distribution over
visited states may differ.

IR(· | ↓)

IR(· | ↑)

IR
exit

for discounted reachability objectives [14]. We thus construct MG
Π

similar toMG
Π. We then obtain the controller ⟨τ,Π⟩ by computing a

planner τ optimizing the values ofMG
Π [49]. As the state spaces of

MG
Π andMG

Π are identical, planners forMG
Π can thus be executed

inMG
Π.

Lifting the guarantees. In the following, we lift the guarantees
obtained for the low-level policies to a planner operating on the two-
level model. We need to overcome the following challenge. To learn
one latent model per room R and the low-level policies Π, we run
WAE-DQN independently in each room (Fig. 1). Viewing R as an
MDP, we obtain a transition loss LR,d

P for direction d associated with
latent policy πR,d ∈ Π. Independent training leads to complications.
Room R has its own initial distribution IR, while, at synthesis time,
the initial distribution depends on controller π = ⟨τ,Π⟩ and is a
marginalization of IR(· | d) w.r.t. directions d chosen by τ . Recall
that LR,d

P is the TV between original and latent transition functions
averaged according to ξπR,d , i.e., states likely to be produced un-
der the policy π when using IR as entrance function, and not IR.
Since ξπR,d could be unrelated to the distribution over states visited
under high-level controller π, LR,d

P (and thus the guarantees from the
latent model) could turn obsolete/non-reusable.

Fig. 6 illustrates the distribution shift. A detailed analysis is given
in Appendix F. The following theorem states that, if the initial dis-
tributions IR are well designed with sufficient coverage of room R’s
state space, we can learn a latent entrance function IR to lift the
room-associated guarantees.

Theorem 5. Let ⟨τ,Π⟩ be a |V|-memory controller for H and π be
an equivalent stationary policy inMΠ.

• (Entrance loss) Define IR : DR → ∆
(
S
)

and

LI = ER,d∼ξπ D
(
ϕIR(· | d), IR(· | d)

)
,

where ξπ is the stationary measure ofMΠ under π and

ϕIR(s | d) = Ps∼IR(·|d)[s = ϕR(s)] for all s ∈ S;

• (State coverage) Assume that for any training room R ∈ R and
direction d ∈ DR, the projection of the BSCC ofMΠ under π to
SR is included in the BSCC of R under πR,d;

Then, there exists a constant K ≥ 0 so that:

|V MΠ,π
I − V

MG
Π,τ

I
| ≤ LI +K · ER,d∼ξπ LR,d

P

ξπ(sreset) · (1−γ)
.

Note that the right-hand side of the numerator, K ·ER,d∼ξπ LR,d
P ,

is the sole part in the bound related to the low-level components.
Accordingly, the lower the transition loss of rooms likely to be vis-
ited under the planner, the tighter is the bound. This essentially im-
plies that the low-level components, being learned independently, are
reusable when (i) the high-level topology of the environment changes
(e.g., removing edges or expanding the map with rooms similar to
those already present in the graph) or (ii) the high-level objective
changes.

7 Experimental Evaluation

We highlight the feasibility of our approach in a case study involving
an agent navigating through a building of scalable size amid moving
adversaries. We aim to show the following: (1) our method success-
fully trains latent policies in a non-trivial setting; (2) the theoreti-
cal bounds are a good prediction for the observed behavior; (3) our
low-level policies are reusable, as the theory predict. Details are in
Appendix G. A video of a synthesized controller in such an environ-
ment is available at https://youtu.be/crowN8-GaRg

The environments consist of N rooms of m × n cells, each em-
bedding at most l possible items: walls, entries/exits, power-ups, and
A adversaries. The latter patrol moving between rooms with varying
stochastic behaviors (along wall, chase the agent, or fully random).
The rooms need not be identical. Each state features (i) a bitmap of
rank 4 and shape [N, l,m, n] and (ii) step, power-up, and life-point
(LP) counters. Note that the resulting state space is very large and
policies may require, e.g., convolutional NNs to be able to process
observations. Fig. 7 shows that DRL (here, DQN with SOTA exten-
sions and reward shaping, [29, 45]) struggles to learn for 9 rooms/11
adversaries.

We use WAE-DQN to train low-level latent models and
policies in the same environment: each time it resets, the
agent is placed in a random room. Leveraging the represen-
tation learning capabilities of WAE-MDPs, the latent space

Figure 7: Evaluation of WAE-DQN (low-level) and DQN (high-level)
policies respectively in each room/direction and in a 9-room, 20×20
environment (avg. over 30 rollouts).

N LP A avg. return (γ = 1) latent values avg. values (original)
9 1 11 0.5467 ± 0.1017 0.1378 0.07506 ± 0.01664
9 3 11 0.7 ±0.09428 0.4343 0.01 ± 0.00163
25 3 23 0.4933 ±0.09832 0.1763 0.007833 ±0.002131
25 5 23 0.5667 ±0.07817 0.346 0.00832 ± 0.00288
49 7 47 0.02667±0.01491 0.004229 5.565 · 10−6± 7 · 10−6

Table 1: Synthesis for γ = 0.99

generalizes over all rooms: we only train 4 policies
(one for each direction). Fig. 7 shows that the low-
level policies are successfully learned for the reach-
avoid objectives. PAC bounds for each direction are
reported in Tab. 2 (ε = 0.01, δ = 0.05). From those
policies, we apply our synthesis procedure to con-
struct a high-level controller. The results are shown
in Tab. 1. To highlight the reusability of the low-level

d L̂d
P

→ 0.50412
← 0.77787
↑ 0.49631
↓ 0.48058

Table 2
components, we modify the environment by drastically increasing the
number of rooms and adversaries (up to 50 each) while keeping the
same latent models/policies. The predicted latent values are consis-
tent with the observed ones and comprised between the approximated
return and values in the environment (averaged over 30 rollouts).

8 Conclusion
Our approach enables synthesis in environments where traditional
formal synthesis does not scale. Given a high-level map, we integrate
DRL in the low-level rooms by training latent models, which ensure
PAC bounds on their value function. Composing with the latent mod-
els/policies allows to construct a planner in a high-level MDP, where
the guarantees can be lifted. Experiments show the feasibility in sce-
narios that are even challenging for pure DRL.

While we believe the map is a mild requirement, future work in-
volves its relaxation to “emulate” synthesis with only the specifica-
tion as input (end-to-end). In that sense, integrating skill discovery
[8] or goal-oriented [40] RL are promising directions. As discussed
in Sect. 2, the problem tackled in this work involves, in essence,
multiple objective. A natural extension is to incorporate traditional
multi-objective reasoning (e.g., [13, 28]) into the decision process,
allowing to reason about the trade-offs between the different low-
level objectives.

Another aspect is to refine the PAC bounds, being currently quite
conservative, and obtain an estimate efficiently.

Acknowledgements
We thank Sterre Lutz and Willem Röpke for providing valuable feed-
back during the preparation of this manuscript.

This research received support from the Belgian Flem-
ish Government’s AI Research Program and DESCARTES
iBOF project, the Dutch Research Council (NWO) Talent Pro-
gramme (VI.Veni.222.119), Independent Research Fund Denmark
(10.46540/3120-00041B), DIREC - Digital Research Centre Den-
mark (9142-0001B), Villum Investigator Grant S4OS (37819), and
ISF grant (1679/21).

References
[1] A. Abels, D. M. Roijers, T. Lenaerts, A. Nowé, and D. Steckelmacher.

Dynamic weights in multi-objective deep reinforcement learning. In
K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pages 11–20. PMLR, 2019. URL http:
//proceedings.mlr.press/v97/abels19a.html.

https://youtu.be/crowN8-GaRg
http://proceedings.mlr.press/v97/abels19a.html
http://proceedings.mlr.press/v97/abels19a.html

[2] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy op-
timization. In ICML, volume 70, pages 22–31. PMLR, 2017. URL
http://proceedings.mlr.press/v70/achiam17a.html.

[3] P. A. Alamdari, G. Avni, T. A. Henzinger, and A. Lukina. Formal
methods with a touch of magic. In FMCAD, pages 138–147. IEEE,
2020. doi: 10.34727/2020/ISBN.978-3-85448-042-6_21. URL https:
//doi.org/10.34727/2020/isbn.978-3-85448-042-6_21.

[4] L. N. Alegre, A. L. C. Bazzan, D. M. Roijers, A. Nowé, and B. C.
da Silva. Sample-efficient multi-objective learning via generalized pol-
icy improvement prioritization. In AAMAS, pages 2003–2012. ACM,
2023. doi: 10.5555/3545946.3598872. URL https://dl.acm.org/doi/10.
5555/3545946.3598872.

[5] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu. Safe reinforcement learning via shielding. In AAAI, pages
2669–2678. AAAI Press, 2018. doi: 10.1609/aaai.v32i1.11797. URL
https://doi.org/10.1609/aaai.v32i1.11797.

[6] R. Alur, S. Bansal, O. Bastani, and K. Jothimurugan. A framework
for transforming specifications in reinforcement learning. In Principles
of Systems Design - Essays Dedicated to Thomas A. Henzinger on the
Occasion of His 60th Birthday, volume 13660 of LNCS, pages 604–
624. Springer, 2022. doi: 10.1007/978-3-031-22337-2_29. URL https:
//doi.org/10.1007/978-3-031-22337-2_29.

[7] T. S. Badings, L. Romao, A. Abate, D. Parker, H. A. Poonawala,
M. Stoelinga, and N. Jansen. Robust control for dynamical systems
with non-Gaussian noise via formal abstractions. J. Artif. Intell. Res.,
76:341–391, 2023. doi: 10.1613/jair.1.14253. URL https://doi.org/10.
1613/jair.1.14253.

[8] A. Bagaria, J. K. Senthil, and G. Konidaris. Skill discovery for explo-
ration and planning using deep skill graphs. In M. Meila and T. Zhang,
editors, Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages 521–531. PMLR,
2021. URL http://proceedings.mlr.press/v139/bagaria21a.html.

[9] C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.
ISBN 978-0-262-02649-9.

[10] A. G. Barto and S. Mahadevan. Recent advances in hierarchical
reinforcement learning. Discret. Event Dyn. Syst., 13(4):341–379,
2003. doi: 10.1023/A:1025696116075. URL https://doi.org/10.1023/A:
1025696116075.

[11] O. Bastani, Y. Pu, and A. Solar-Lezama. Verifiable reinforce-
ment learning via policy extraction. In NeurIPS, pages 2499–
2509, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
e6d8545daa42d5ced125a4bf747b3688-Abstract.html.

[12] M. G. Bellemare, W. Dabney, and M. Rowland. Distributional Rein-
forcement Learning. MIT Press, 2023.

[13] K. Chatterjee, R. Majumdar, and T. A. Henzinger. Markov decision
processes with multiple objectives. In B. Durand and W. Thomas, ed-
itors, STACS 2006, 23rd Annual Symposium on Theoretical Aspects
of Computer Science, Marseille, France, February 23-25, 2006, Pro-
ceedings, volume 3884 of Lecture Notes in Computer Science, pages
325–336. Springer, 2006. doi: 10.1007/11672142_26. URL https:
//doi.org/10.1007/11672142_26.

[14] L. de Alfaro, T. A. Henzinger, and R. Majumdar. Discounting the future
in systems theory. In ICALP, volume 2719 of LNCS, pages 1022–1037.
Springer, 2003. doi: 10.1007/3-540-45061-0_79. URL https://doi.org/
10.1007/3-540-45061-0_79.

[15] F. Delgrange, J. Katoen, T. Quatmann, and M. Randour. Simple
strategies in multi-objective mdps. In A. Biere and D. Parker, edi-
tors, Tools and Algorithms for the Construction and Analysis of Sys-
tems - 26th International Conference, TACAS 2020, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part
I, volume 12078 of Lecture Notes in Computer Science, pages 346–
364. Springer, 2020. doi: 10.1007/978-3-030-45190-5_19. URL
https://doi.org/10.1007/978-3-030-45190-5_19.

[16] F. Delgrange, A. Nowé, and G. A. Pérez. Distillation of RL policies
with formal guarantees via variational abstraction of Markov decision
processes. In AAAI, pages 6497–6505. AAAI Press, 2022. doi: 10.1609/
aaai.v36i6.20602. URL https://doi.org/10.1609/aaai.v36i6.20602.

[17] F. Delgrange, A. Nowé, and G. A. Pérez. Wasserstein auto-encoded
MDPs: Formal verification of efficiently distilled RL policies with
many-sided guarantees. In ICLR. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=JLLTtEdh1ZY.

[18] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforce-
ment learning. JMLR, 6(Apr):503–556, 2005.

[19] K. Etessami, M. Z. Kwiatkowska, M. Y. Vardi, and M. Yannakakis.
Multi-objective model checking of markov decision processes. Log.
Methods Comput. Sci., 4(4), 2008. doi: 10.2168/LMCS-4(4:8)2008.

URL https://doi.org/10.2168/LMCS-4(4:8)2008.
[20] V. Forejt, M. Z. Kwiatkowska, and D. Parker. Pareto curves for prob-

abilistic model checking. In S. Chakraborty and M. Mukund, editors,
Automated Technology for Verification and Analysis - 10th International
Symposium, ATVA 2012, Thiruvananthapuram, India, October 3-6,
2012. Proceedings, volume 7561 of Lecture Notes in Computer Science,
pages 317–332. Springer, 2012. doi: 10.1007/978-3-642-33386-6_25.
URL https://doi.org/10.1007/978-3-642-33386-6_25.

[21] J. Fu and U. Topcu. Probably approximately correct MDP learning
and control with temporal logic constraints. In Robotics: Science and
Systems X, 2014. doi: 10.15607/RSS.2014.X.039. URL http://www.
roboticsproceedings.org/rss10/p39.html.

[22] C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. G. Bellemare.
DeepMDP: Learning continuous latent space models for representation
learning. In ICML, volume 97, pages 2170–2179. PMLR, 2019. URL
http://proceedings.mlr.press/v97/gelada19a.html.

[23] M. Germain, K. Gregor, I. Murray, and H. Larochelle. MADE: masked
autoencoder for distribution estimation. In ICML, volume 37, pages
881–889. JMLR.org, 2015. URL http://proceedings.mlr.press/v37/
germain15.html.

[24] M. Giacobbe, M. Hasanbeig, D. Kroening, and H. Wijk. Shielding atari
games with bounded prescience. In AAMAS, pages 1507–1509. ACM,
2021. doi: 10.5555/3463952.3464141. URL https://www.ifaamas.org/
Proceedings/aamas2021/pdfs/p1507.pdf.

[25] R. Givan, T. L. Dean, and M. Greig. Equivalence notions and model
minimization in Markov decision processes. Artif. Intell., 147(1-2):
163–223, 2003. doi: 10.1016/S0004-3702(02)00376-4. URL https:
//doi.org/10.1016/S0004-3702(02)00376-4.

[26] A. Hartmanns, S. Junges, J. Katoen, and T. Quatmann. Multi-cost
bounded reachability in MDP. In D. Beyer and M. Huisman, edi-
tors, Tools and Algorithms for the Construction and Analysis of Sys-
tems - 24th International Conference, TACAS 2018, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,
Part II, volume 10806 of Lecture Notes in Computer Science, pages
320–339. Springer, 2018. doi: 10.1007/978-3-319-89963-3_19. URL
https://doi.org/10.1007/978-3-319-89963-3_19.

[27] M. Hasanbeig, A. Abate, and D. Kroening. Cautious reinforcement
learning with logical constraints. In AAMAS, pages 483–491, 2020.
doi: 10.5555/3398761.3398821. URL https://dl.acm.org/doi/10.5555/
3398761.3398821.

[28] C. F. Hayes, R. Radulescu, E. Bargiacchi, J. Källström, M. Mac-
farlane, M. Reymond, T. Verstraeten, L. M. Zintgraf, R. Dazeley,
F. Heintz, E. Howley, A. A. Irissappane, P. Mannion, A. Nowé,
G. de Oliveira Ramos, M. Restelli, P. Vamplew, and D. M. Roi-
jers. A practical guide to multi-objective reinforcement learning
and planning. Auton. Agents Multi Agent Syst., 36(1):26, 2022.
doi: 10.1007/S10458-022-09552-Y. URL https://doi.org/10.1007/
s10458-022-09552-y.

[29] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dab-
ney, D. Horgan, B. Piot, M. G. Azar, and D. Silver. Rainbow: Com-
bining improvements in deep reinforcement learning. In AAAI, pages
3215–3222. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.11796.
URL https://doi.org/10.1609/aaai.v32i1.11796.

[30] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a
neural network. CoRR, abs/1503.02531, 2015. URL http://arxiv.org/
abs/1503.02531.

[31] B. Huang. Steady state analysis of episodic reinforcement learning. In
NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
69bfa2aa2b7b139ff581a806abf0a886-Abstract.html.

[32] K. Jothimurugan, O. Bastani, and R. Alur. Abstract value iteration
for hierarchical reinforcement learning. In AISTATS, volume 130,
pages 1162–1170. PMLR, 2021. URL http://proceedings.mlr.press/
v130/jothimurugan21a.html.

[33] S. Junges and M. T. J. Spaan. Abstraction-refinement for hierarchical
probabilistic models. In CAV, volume 13371 of LNCS, pages 102–123.
Springer, 2022. doi: 10.1007/978-3-031-13185-1_6. URL https://doi.
org/10.1007/978-3-031-13185-1_6.

[34] Y. Kazak, C. W. Barrett, G. Katz, and M. Schapira. Verifying deep-RL-
driven systems. In NetAI@SIGCOMM, pages 83–89, 2019.

[35] B. Könighofer, R. Bloem, R. Ehlers, and C. Pek. Correct-by-
construction runtime enforcement in AI - A survey. In Principles of
Systems Design - Essays Dedicated to Thomas A. Henzinger on the
Occasion of His 60th Birthday, volume 13660 of LNCS, pages 650–
663. Springer, 2022. doi: 10.1007/978-3-031-22337-2_31. URL
https://doi.org/10.1007/978-3-031-22337-2_31.

[36] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum.
Hierarchical deep reinforcement learning: Integrating temporal ab-

http://proceedings.mlr.press/v70/achiam17a.html
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_21
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_21
https://dl.acm.org/doi/10.5555/3545946.3598872
https://dl.acm.org/doi/10.5555/3545946.3598872
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1007/978-3-031-22337-2_29
https://doi.org/10.1007/978-3-031-22337-2_29
https://doi.org/10.1613/jair.1.14253
https://doi.org/10.1613/jair.1.14253
http://proceedings.mlr.press/v139/bagaria21a.html
https://doi.org/10.1023/A:1025696116075
https://doi.org/10.1023/A:1025696116075
https://proceedings.neurips.cc/paper/2018/hash/e6d8545daa42d5ced125a4bf747b3688-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e6d8545daa42d5ced125a4bf747b3688-Abstract.html
https://doi.org/10.1007/11672142_26
https://doi.org/10.1007/11672142_26
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/978-3-030-45190-5_19
https://doi.org/10.1609/aaai.v36i6.20602
https://openreview.net/pdf?id=JLLTtEdh1ZY
https://openreview.net/pdf?id=JLLTtEdh1ZY
https://doi.org/10.2168/LMCS-4(4:8)2008
https://doi.org/10.1007/978-3-642-33386-6_25
http://www.roboticsproceedings.org/rss10/p39.html
http://www.roboticsproceedings.org/rss10/p39.html
http://proceedings.mlr.press/v97/gelada19a.html
http://proceedings.mlr.press/v37/germain15.html
http://proceedings.mlr.press/v37/germain15.html
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1507.pdf
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1507.pdf
https://doi.org/10.1016/S0004-3702(02)00376-4
https://doi.org/10.1016/S0004-3702(02)00376-4
https://doi.org/10.1007/978-3-319-89963-3_19
https://dl.acm.org/doi/10.5555/3398761.3398821
https://dl.acm.org/doi/10.5555/3398761.3398821
https://doi.org/10.1007/s10458-022-09552-y
https://doi.org/10.1007/s10458-022-09552-y
https://doi.org/10.1609/aaai.v32i1.11796
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://proceedings.neurips.cc/paper/2020/hash/69bfa2aa2b7b139ff581a806abf0a886-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/69bfa2aa2b7b139ff581a806abf0a886-Abstract.html
http://proceedings.mlr.press/v130/jothimurugan21a.html
http://proceedings.mlr.press/v130/jothimurugan21a.html
https://doi.org/10.1007/978-3-031-13185-1_6
https://doi.org/10.1007/978-3-031-13185-1_6
https://doi.org/10.1007/978-3-031-22337-2_31

straction and intrinsic motivation. In NeurIPS, pages 3675–
3683, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
f442d33fa06832082290ad8544a8da27-Abstract.html.

[37] P. Ladosz, L. Weng, M. Kim, and H. Oh. Exploration in deep re-
inforcement learning: A survey. Inf. Fusion, 85:1–22, 2022. doi:
10.1016/J.INFFUS.2022.03.003. URL https://doi.org/10.1016/j.inffus.
2022.03.003.

[38] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. In
POPL, pages 344–352. ACM Press, 1989. doi: 10.1145/75277.75307.
URL https://doi.org/10.1145/75277.75307.

[39] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E.
Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip
code recognition. Neural Comput., 1(4):541–551, 1989. doi: 10.1162/
NECO.1989.1.4.541. URL https://doi.org/10.1162/neco.1989.1.4.541.

[40] M. Liu, M. Zhu, and W. Zhang. Goal-conditioned reinforcement learn-
ing: Problems and solutions. In IJCAI, pages 5502–5511. ijcai.org,
2022. doi: 10.24963/IJCAI.2022/770. URL https://doi.org/10.24963/
ijcai.2022/770.

[41] L. Lovász and P. Winkler. Exact mixing in an unknown markov chain.
Electron. J. Comb., 2, 1995. doi: 10.37236/1209. URL https://doi.org/
10.37236/1209.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller. Playing atari with deep reinforcement learn-
ing. CoRR, abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nat., 518(7540):529–533, 2015. doi:
10.1038/nature14236. URL https://doi.org/10.1038/nature14236.

[44] S. P. Nayak, L. N. Egidio, M. D. Rossa, A. Schmuck, and R. M. Jungers.
Context-triggered abstraction-based control design. IEEE Open Jour-
nal of Control Systems, 2:277–296, 2023. doi: 10.1109/OJCSYS.2023.
3305835. URL https://doi.org/10.1109/OJCSYS.2023.3305835.

[45] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In ICML,
pages 278–287. Morgan Kaufmann, 1999.

[46] C. A. O’Cinneide. Entrywise perturbation theory and error analysis for
Markov chains. Numerische Mathematik, 65(1):109–120, 1993. URL
http://eudml.org/doc/133726.

[47] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
POPL, pages 179–190. ACM Press, 1989. doi: 10.1145/75277.75293.
URL https://doi.org/10.1145/75277.75293.

[48] J. G. Propp and D. B. Wilson. How to get a perfectly random sample
from a generic markov chain and generate a random spanning tree of
a directed graph. J. Algorithms, 27(2):170–217, 1998. doi: 10.1006/
JAGM.1997.0917. URL https://doi.org/10.1006/jagm.1997.0917.

[49] M. L. Puterman. Markov decision processes: Discrete stochastic dy-
namic programming. Wiley, 1994. ISBN 978-0-47161977-2. doi: 10.
1002/9780470316887. URL https://doi.org/10.1002/9780470316887.

[50] M. Reymond and A. Nowé. Pareto-dqn: Approximating the pareto front
in complex multi-objective decision problems. In Proceedings of the
adaptive and learning agents workshop (ALA-19) at AAMAS, 2019.

[51] M. Reymond, E. Bargiacchi, and A. Nowé. Pareto conditioned net-
works. In P. Faliszewski, V. Mascardi, C. Pelachaud, and M. E.
Taylor, editors, 21st International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2022, Auckland, New Zealand,
May 9-13, 2022, pages 1110–1118. International Foundation for Au-
tonomous Agents and Multiagent Systems (IFAAMAS), 2022. doi: 10.
5555/3535850.3535974. URL https://www.ifaamas.org/Proceedings/
aamas2022/pdfs/p1110.pdf.

[52] M. Roderick, C. Grimm, and S. Tellex. Deep abstract Q-networks. In
AAMAS, pages 131–138, 2018. URL http://dl.acm.org/citation.cfm?id=
3237409.

[53] L. Ryzhyk, P. Chubb, I. Kuz, E. L. Sueur, and G. Heiser. Automatic de-
vice driver synthesis with termite. In SOSP, pages 73–86. ACM, 2009.
doi: 10.1145/1629575.1629583. URL https://doi.org/10.1145/1629575.
1629583.

[54] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience
replay. In ICML, 2016. URL http://arxiv.org/abs/1511.05952.

[55] R. Serfozo. Basics of Applied Stochastic Processes. Probability and Its
Applications. Springer Berlin Heidelberg, 2009. ISBN 9783540893325.
URL https://books.google.be/books?id=JBBRiuxTN0QC.

[56] A. Sootla, A. I. Cowen-Rivers, T. Jafferjee, Z. Wang, D. H. Mguni,
J. Wang, and H. Ammar. Sauté RL: Almost surely safe reinforce-
ment learning using state augmentation. In ICML, volume 162, pages
20423–20443. PMLR, 2022. URL https://proceedings.mlr.press/v162/
sootla22a.html.

[57] R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning.
Artif. Intell., 112(1-2):181–211, 1999. doi: 10.1016/S0004-3702(99)
00052-1. URL https://doi.org/10.1016/S0004-3702(99)00052-1.

[58] J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-
learning. Mach. Learn., 16(3):185–202, 1994. doi: 10.1007/
BF00993306. URL https://doi.org/10.1007/BF00993306.

[59] J. N. Tsitsiklis and B. V. Roy. An analysis of temporal-difference learn-
ing with function approximation. IEEE Trans. Autom. Control., 42(5):
674–690, 1997. doi: 10.1109/9.580874. URL https://doi.org/10.1109/
9.580874.

[60] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learn-
ing with double Q-learning. In AAAI, pages 2094–2100. AAAI Press,
2016. doi: 10.1609/AAAI.V30I1.10295. URL https://doi.org/10.1609/
aaai.v30i1.10295.

[61] K. Watanabe, M. van der Vegt, I. Hasuo, J. Rot, and S. Junges. Pareto
curves for compositionally model checking string diagrams of mdps.
In TACAS, volume 14571 of LNCS, pages 279–298. Springer, 2024.
doi: 10.1007/978-3-031-57249-4_14. URL https://doi.org/10.1007/
978-3-031-57249-4_14.

[62] E. Wiewiora. Potential-based shaping and Q-value initialization are
equivalent. J. Artif. Intell. Res., 19:205–208, 2003. doi: 10.1613/JAIR.
1190. URL https://doi.org/10.1613/jair.1190.

[63] Z. Xiong, I. Agarwal, and S. Jagannathan. HiSaRL: A hierarchi-
cal framework for safe reinforcement learning. In SafeAI, volume
3087 of CEUR Workshop Proceedings. CEUR-WS.org, 2022. URL
https://ceur-ws.org/Vol-3087/paper_17.pdf.

[64] C. Yang, M. L. Littman, and M. Carbin. Reinforcement learning for
general LTL objectives is intractable. CoRR, abs/2111.12679, 2021.
URL https://arxiv.org/abs/2111.12679.

[65] W. Yang, G. Marra, G. Rens, and L. D. Raedt. Safe reinforcement
learning via probabilistic logic shields. In IJCAI, pages 5739–5749.
ijcai.org, 2023. doi: 10.24963/ijcai.2023/637. URL https://doi.org/10.
24963/ijcai.2023/637.

[66] A. Zhang, R. T. McAllister, R. Calandra, Y. Gal, and S. Levine. Learn-
ing invariant representations for reinforcement learning without recon-
struction. In ICLR. OpenReview.net, 2021. URL https://openreview.
net/forum?id=-2FCwDKRREu.

[67] D. Žikelić, M. Lechner, A. Verma, K. Chatterjee, and T. A. Henzinger.
Compositional policy learning in stochastic control systems with formal
guarantees. In NeurIPS, 2023.

https://proceedings.neurips.cc/paper/2016/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://doi.org/10.1016/j.inffus.2022.03.003
https://doi.org/10.1016/j.inffus.2022.03.003
https://doi.org/10.1145/75277.75307
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.24963/ijcai.2022/770
https://doi.org/10.24963/ijcai.2022/770
https://doi.org/10.37236/1209
https://doi.org/10.37236/1209
http://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/OJCSYS.2023.3305835
http://eudml.org/doc/133726
https://doi.org/10.1145/75277.75293
https://doi.org/10.1006/jagm.1997.0917
https://doi.org/10.1002/9780470316887
https://www.ifaamas.org/Proceedings/aamas2022/pdfs/p1110.pdf
https://www.ifaamas.org/Proceedings/aamas2022/pdfs/p1110.pdf
http://dl.acm.org/citation.cfm?id=3237409
http://dl.acm.org/citation.cfm?id=3237409
https://doi.org/10.1145/1629575.1629583
https://doi.org/10.1145/1629575.1629583
http://arxiv.org/abs/1511.05952
https://books.google.be/books?id=JBBRiuxTN0QC
https://proceedings.mlr.press/v162/sootla22a.html
https://proceedings.mlr.press/v162/sootla22a.html
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1007/BF00993306
https://doi.org/10.1109/9.580874
https://doi.org/10.1109/9.580874
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.1007/978-3-031-57249-4_14
https://doi.org/10.1007/978-3-031-57249-4_14
https://doi.org/10.1613/jair.1190
https://ceur-ws.org/Vol-3087/paper_17.pdf
https://arxiv.org/abs/2111.12679
https://doi.org/10.24963/ijcai.2023/637
https://doi.org/10.24963/ijcai.2023/637
https://openreview.net/forum?id=-2FCwDKRREu
https://openreview.net/forum?id=-2FCwDKRREu

Appendix

A Remark about Episodic Processes and Ergodicity

Assumption 1 implies ergodicity of bothM andM under mild conditions [31]. In ergodic MDPs, each state is almost surely visited infinitely
often [9]. Thus, for unconstrained reachability goals (B = ∅), while a discount factor still provides insights into how quickly the objective is
achieved, optimizing the values associated with reaching the target T before the episode concludes (B = {sreset}) is often more appealing.
This involves finding a policy π maximizing V π

I (O(T,B = {sreset})). In essence, this is how an RL agent is trained: learning to fulfill the
low-level objective before the episode concludes.

B Proofs from Sect. 5

Proof of Thm. 1. Note that ∣∣∣V π(s,O)− V π(ϕ(s),O)
∣∣∣ ≤ 1

ξπ(s)
Es′∼ξπ

∣∣∣V π(s′,O)− V π(ϕ(s′),O)∣∣∣
for any s ∈ S. Since sreset is almost surely visited episodically, restarting the MDP (i.e., visiting sreset) is a measurable event, meaning that
sreset has a non-zero probability ξπ(sreset) ∈ (0, 1). This gives us:

∣∣∣V π
I (O)− V π

I (O)
∣∣∣

=
∣∣∣Es∼I V

π(s,O)− Es∼I V
π(s,O)

∣∣∣
=
1

γ

∣∣∣Es∼I

[
γ · V π(s,O)

]
− Es∼I

[
γ · V π(s,O)

]∣∣∣
=
1

γ

∣∣∣V π(sreset,O)− V π(ϕ(sreset),O)
∣∣∣ (by Assumption 1)

≤ 1

γξπ(sreset)
Es∼ξπ

∣∣∣V π(s,O)− V π(ϕ(s),O)
∣∣∣

≤ LP

ξπ(sreset)(1−γ)
. (by Lem. 1)

Proof of Lem. 2. By definition of the total variation distance, we have

LP = Es,a∼ξπ D
(
ϕP(· | s, a),P(· | ϕ(s), a)

)
= Es,a∼ξπ

1
2

∑
s′∈S

∣∣Ps′∼P(·|s,a)
[
ϕ
(
s′
)
= s′

]
−P

(
s′ | s, a

)∣∣
= Es,a∼ξπ

1
2

∑
s′∈S

∣∣Es′∼P(·|s,a) 1
{
ϕ
(
s′
)
= s′

}
−P

(
s′ | s, a

)∣∣ .

Notice that this quantity cannot be approximated from samples distributed according to ξπ alone: intuitively, we need to have access to the
original transition function P to be able to estimate the expectation Es′∼P(·|s,a) 1 {ϕ(s′) = s′} for each single point drawn from ξπ .

Instead, consider now the following upper bound on LP:

LP ≤ Es,a∼ξπ Es′∼P(·|s,a)D
(
ϕ
(
· | s′

)
,P(· | s, a)

)
= L↑

P,

where ϕ(s′ | s′) is defined as 1 {ϕ(s′) = s′} for any s′ ∈ S. This bound directly follows from Jensen’s inequality. We know from [16] that
L̂P + ε ≤ L↑

P with probability at most exp
(
−2T ε2

)
. We recall the proof for the sake of presentation:

L↑
P

= Es,a,s′∼ξπ D
(
ϕ
(
· | s′

)
,P(· | ϕ(s), a)

)
= Es,a,s′∼ξπ

[
1

2

∑
s′∈S

∣∣ϕ(s′ | s′)−P
(
s′ | ϕ(s), a

)∣∣]

= Es,a,s′∼ξπ

1
2
·

(1−P
(
ϕ
(
s′
)
| ϕ(s), a

))
+

∑
s′∈S\{ϕ(s′)}

∣∣0−P
(
s′ | ϕ(s), a

)∣∣
(because ϕ(s′ | s′) = 1 if ϕ(s′) = s′ and 0 otherwise)

= Es,a,s′∼ξπ

1
2
·

(1−P
(
ϕ
(
s′
)
| ϕ(s), a

))
+

∑
s′∈S\{ϕ(s′)}

P
(
s′ | ϕ(s), a

)
= Es,a,s′∼ξπ

[
1

2
· 2 ·

(
1−P

(
ϕ
(
s′
)
| ϕ(s), a

))]
= Es,a,s′∼ξπ

[
1−P

(
ϕ
(
s′
)
| ϕ(s), a

)]
.

By Hoeffding’s inequality, we obtain that L̂P + ε ≤ L↑
P with probability at most exp

(
−2T ε2

)
. Equivalently, this means that L̂P + ε > L↑

P

with at least probability 1− exp
(
−2T ε2

)
. The fact that L̂P + ε > L↑

P ≥ LP finally yields the bound.
By applying Hoeffding’s inequality again, we obtain that with at most probability exp

(
−2T ε2

)
, we have ξ̂reset − ε ≥ ξπ(sreset). By the

union bound, we have
P
(
L̂P + ε ≤ L↑

P or ξ̂reset − ε ≥ ξπ(sreset)
)
≤ exp

(
−2T ε2

)
+ exp

(
−2Tε2

)
.

Finding a T ≥ 0 which yields δ ≥ 2 exp
(
−2T ε2

)
is sufficient to ensure the bound. In that case, we have

δ ≥ 2 exp
(
−2T ε2

)
⇔ δ/2 ≥ exp

(
−2T ε2

)
⇔ log(δ/2) ≥ −2T ε2 ⇔ T ≥ − log(δ/2)

2ε2
. (3)

Then, we have that with at least probability 1− δ, L̂P + ε > LP and ξ̂reset − ε < ξπ(sreset) if T ≥ ⌈− log(δ)/2ε2⌉.

Proof of Thm. 2. Let ζ, δ > 0, then we know by Lem. 1, Thm. 1, and Lem. 2 that

(i) Es∼ξπ

∣∣V π(s)− V π(ϕ(s))
∣∣ ≤ γLP

1−γ
≤ γ(L̂P+ζ)

1−γ
, with probability 1− δ. Then, to ensure an error of at most ε > 0, we need to set ζ such

that:

γ
(
L̂P + ζ

)
1− γ

≤ γL̂P

1− γ
+ ε ⇐⇒ γζ

1− γ
≤ ε ⇐⇒ ζ ≤ ε(1− γ)

γ
.

Then, by Lem. 2, we need T ≥
⌈

− log δ
2ζ2

⌉
=
⌈

−γ2 log δ
2ε2(1−γ)2

⌉
samples to provide an error of at most ε with probability 1− δ.

(ii)
∣∣V π

I − V π
I

∣∣ ≤ LP
ξπ(sreset)(1−γ)

≤ L̂P+ζ

(ξ̂reset−ζ)(1−γ)
with probability at least 1 − δ. Then, to ensure an error of at most ε > 0, we need to set ζ

such that:

L̂P

ξ̂reset · (1− γ)
+ ε ≥ L̂P + ζ(

ξ̂reset − ζ
)
(1− γ)

⇐⇒
(
ξ̂reset − ζ

)(L̂P

ξ̂reset
+ ε(1− γ)

)
≥ L̂P + ζ

⇐⇒ L̂P + ξ̂reset · ε(1− γ)− L̂P · ζ
ξ̂reset

− ε · ζ(1− γ) ≥ L̂P + ζ

⇐⇒ ξ̂reset · ε(1− γ) ≥ ζ +
L̂P · ζ
ξ̂reset

+ ε · ζ(1− γ) = ζ

(
1 +

L̂P

ξ̂reset
+ ε(1− γ)

)

⇐⇒ ξ̂reset · ε(1− γ)

1 +
L̂

P

ξ̂reset
+ ε(1− γ)

≥ ζ ⇔ ξ̂2reset · ε(1− γ)

L̂P + ξ̂reset · (1 + ε(1− γ))
≥ ζ.

Notice that this upper bound on ζ > 0 is well defined since

(a) ξ̂2reset · ε(1− γ) > 0, and (b) L̂P + ξ̂reset(1 + ε(1− γ)) > 0.

Then, setting ζ ≤ ξ̂2reset·ε·(1−γ)

L̂
P
+ξ̂reset(1+ε(1−γ))

means by Lem. 2 that we need

T ≥
⌈
− log(δ/2)

2ζ2

⌉
≥

− log(δ/2)

(
L̂P + ξ̂reset(1 + ε(1− γ))

)2
2ξ̂4reset · ε2(1− γ)2

samples to provide an error of at most ε with probability at least 1− δ.

C WAE-DQN
In this section, we give additional details on WAE-DQN, which combines representation (WAE-MDP) and policy (DQN) learning. Before
presenting the algorithm, we briefly recall basic RL concepts.

Q-Learning. Q-learning is an RL algorithm whose goal is to learn the optimal solution of the Bellman equation [49]: Q∗(s, a) =
Es′∼P(·|s,a) [rew(s, a, s′) + γ ·maxa′∈A Q∗(s′, a′)] for any (s, a) ∈ S ×A, with

Es0∼I

[
max
a∈A

Q∗(s0, a)

]
= max

π
Eρ∼PrMπ

∑
i≥0

γi · ri

 .

To do so, Q-learning relies on learning Q-values iteratively: at each step i ≥ 0, a transition ⟨s, a, r, s′⟩ is drawn in M, and Qi+1(s, a) =
Qi(s, a) + α(r + γmaxa′∈A Qi(s

′, a′) − Qi(s, a)) for a given learning rate α ∈ (0, 1). Under some assumptions, Qi is guaranteed to
converge to Q∗ [58]. Q-learning is implemented by maintaining a table of size |S × A| of the Q-values. This is intractable for environments
with large or continuous state spaces.

Deep Q-networks (DQN, [43]) is an established technique to scale Q-learning (even for continuous state spaces), at the cost of convergence
guarantees, by approximating the Q-values in parameterized NNs. By fixing a network Q(·, θ) and, for stability [59], periodically fixing a
parameter assignment θ̂, DQN obtains the target network Q(·, θ̂). Q-values are then optimized by applying gradient descent on the following
loss function:

LDQN(θ) = Es,a,r,s′∼B

(
r + γ max

a′∈A
Q(s′, a′ ; θ̂)−Q(s, a ; θ)

)2

, (4)

where πϵ is an ϵ-greedy exploration strategy, i.e., πϵ(a | s) = (1− ϵ)1 {a = argmaxa′ Q(s, a′)}+ ϵ/|A| for some ϵ ∈ (0, 1). In practice, ξπ
is emulated by a replay buffer B where encountered transitions are stored and then sampled later on to minimize LDQN(θ).

Wasserstein auto-encoded MDP (WAE-MDP, [17]) is a distillation technique providing PAC guarantees. Given an MDP M, a policy π
trained using DRL, and the number of states inM, the transition probabilities and embedding function ϕ (both modeled by NNs) are learned
by minimizing LP via gradient descent. Also, a policy π inM is distilled such thatM exhibits bisimilarly close [38, 25, 16] behaviors toM
when executing π, providing PAC guarantees on the difference of the two values from Lem. 1. WAE-MDPs enjoy representation guarantees
that any states clustered to the same latent representation yield close values when LP is minimized [16]: for any latent policy π and s1, s2 ∈ S,
ϕ(s1) = ϕ(s2) implies

∣∣V π(s1)− V π(s2)
∣∣ ≤ γLP

1−γ
(1/ξπ(s1) + 1/ξπ(s2)).

WAE-DQN. Our procedure (Fig. 8) unifies the training and distillation steps (Alg. 1). Intuitively, a WAE-MDP and a (latent) DQN policy
are learned in round-robin fashion: the WAE-MDP produces the input representation (induced by ϕ) that the DQN agent uses to optimize its
policy π. At each step t = 1, . . . , T , the environment is explored via a strategy to collect transitions in a replay buffer. Each training step
consists of two optimization rounds. First, we optimize the parameters of P and ϕ. Second, we optimize DQN’s parameters to learn the policy
as in DQN. DQN may further backpropagate gradients through ϕ. We use a target embedding function ϕ̂ for stability purposes, similar to [66].

H,O

WAE-DQN

WAE-MDP on

s̄
ϕ
sa

R

DQN
πR,d

⟨τ,Π⟩
π

∀d ∈ D

S
y
n
th
es
is

MG
Π

MR

Π

O

∀R ∈ R

Figure 8: Given H and O, we run WAE-DQN in each room R ∈ R and direction d ∈ D in parallel, yielding embedding ϕ, latent MDPs, and
policies Π with PAC guarantees. We then synthesize planner τ to maximize O in succinct modelMG

Π, aggregated as per the map ofH, given
as graph G.

Algorithm 1: WAE-DQN
Input: steps T , model updatesN , batch sizes BWAE, BDQN, and α, ϵ ∈ (0, 1);

Initialize the taget parameters: ⟨ι̂, θ̂DQN⟩ ← copy the parameters ⟨ι, θDQN⟩
Initialize replay buffer B with transitions from random exploration ofM
for t ∈ {1, . . . , T } with s0 ∼ I do

Embed st into the latent space: s← ϕ(st)

Choose action at:

{
w.p. (1−ϵ), define at = argmaxa Q(s, a), and
w.p. ϵ, draw at uniformly from A

Execute at in the environmentM, receive reward rt, and observe st+1

Store the transition in the replay buffer: B ← B ∪ {⟨st, at, rt, st+1⟩}
repeatN times

Sample a batch of size BWAE from B: X ← {⟨s, a, r, s′⟩i}BWAE
i=1 ∼ B

Update ι and θWAE on the batch X by minimizing the WAE-MDP loss (including LP) for the latent policy πϵ ▷ details in [17]

for i ∈ {1, . . . , BDQN} do
Sample a transition from B: s, a, r, s′ ∼ B
Compute the target: ŷ ← r + γmaxa′∈A Q

(
ϕ(s′; ι̂), a′; θ̂DQN

)
Compute the DQN loss (Eq. 4): Li ← (Q(ϕ(s; ι), a; θDQN)− ŷ)2

Update ι and θDQN by minimizing 1/BDQN

∑BDQN
i=1 Li

Update the target params.: ι̂← α · ι+ (1− α) · ι̂; θ̂ ← α · θDQN + (1− α) · θ̂
return ϕ,M, and π

This is consistent with DQN’s target-networks approach: the weights of ϕ̂ are periodically synchronized with those of ϕ. Then, ϕ̂ is paired
with the DQN’s target network, which allows avoiding oscillations and shifts in the representation (a.k.a. moving target issues).

WAE-DQN learns a tractable model of the environment in parallel to the agent’s policy (Algorithm 1). Precisely, the algorithm alternates
between optimizing the quality of the abstraction as well as the representation of the original state space via a WAE-MDP, and optimizing a
latent policy via DQN. We respectively denote the parameters of the state embedding function ϕ, those of the latent transition function P, and
those of the Deep Q-networks by ι, θWAE, and θDQN.

D Explicit Construction of the MDP Plan
Along this section, fix a two-level modelH = ⟨G, ℓ,R, v0, ⟨d0, d1⟩⟩ with its explicit MDP representationM = ⟨S,A,P, I⟩.

To enable high-level reasoning when the rooms are aggregated into a unified model, we add the following assumption.

Assumption 3. All rooms R ∈ R share the same reset state sreset inH.

Note that Assumption 3 is a technicality that can be trivially met in every two-level model H: it just requires that when a reset is triggered
in a room R ofH, the whole model is globally reset, and not only R, locally.

We define an MDP MΠ, called an MDP plan, such that policies in MΠ correspond to planners. Recall that the actions that a planner
performs consist of choosing a policy once entering a room. Accordingly, we defineMΠ = ⟨SΠ,AΠ,PΠ, IΠ⟩. States in SΠ keep track of the
location in a room as well as the target of the low-level policy that is being executed. Formally,

SΠ = (∪R∈R(SR \ {sreset})× E) ∪ {sreset,⊥} ,

where a pair ⟨s, v, u⟩ ∈ SΠ means that the current room is v, the target of the low-level policy is to exit the room in direction d = ⟨v, u⟩,
and the current state is s ∈ Sℓ(v). Following Assumption 3, the rooms share the reset state sreset, and ⊥ is a special sink state that we add
for technical reasons to disable actions in states. The initial distribution IΠ has for support {⟨s, v, u⟩ ∈ SΠ | v = v0 and ⟨v, u⟩ = d1} where
states s ∈ Sℓ(v0) are distributed according to Iℓ(v0)(· | d0). Actions chosen correspond to those of the planner — only required when entering
a room — so the action space is AΠ = E ∪ {∗}, where d ∈ E means that the low-level policy that is executed exits via direction d, and ∗ is
a special action that is used inside a room, indicating no change to the low-level policy. Note that once d is chosen, we only allow exiting the
room through direction d. We define the transition function. Let P be the transition function of the explicit MDPM. For a state ⟨s, v, u⟩ ∈ SΠ
with d = ⟨v, u⟩,

(i) if s is not an exit state, i.e., s ̸∈ Oℓ(v)(d), then the action is chosen by the low-level policy πℓ(v),d, and the next state is chosen according to
the transitions of ℓ(v): for every s′ ∈ Sℓ(v) \ {sreset},

PΠ

(
⟨s′, v, u⟩ | ⟨s, v, u⟩, ∗

)
= Ea∼πℓ(v),d(·|s)P

(
⟨s′, v⟩ | ⟨s, v⟩, a

)
; (5)

(ii) if s is an exit state in direction d, i.e., s ∈ Oℓ(v)(d), the next room is entered according to the entrance function from direction d and the
planner needs to choose a new target direction d′: for every s′ ∈ Sℓ(u) \ {sreset} and edge d′ = ⟨u, t⟩ ∈ out(u):

PΠ

(
⟨s′, u, t⟩ | ⟨s, v, u⟩, d′

)
= P

(
⟨s′, u⟩ | ⟨s, v⟩, aexit

)
= Iℓ(u)

(
s′ | d

)
(6)

(iii) the reset state is handled exactly as in the explicit model M: PΠ(sreset | ⟨s, v, u⟩, ∗) =
Ea∼πℓ(v),d

P(sreset | ⟨s, v⟩, a), and PΠ(· | sreset, a) = IΠ for any a ∈ AΠ;
(iv) any other undefined distribution transitions deterministically to the sink state ⊥ so that PΠ(⊥ | ⊥, a) = 1 for any a ∈ AΠ.

Proper policies. We say that a policy π for MΠ is proper if the decisions of π ensure to almost surely avoid ⊥, i.e.,
V π(s,O(T = {⊥} , B = ∅)) = 0 for all states s ∈ SΠ \ {⊥}. Note that improper policies strictly consist of those which prescribe to
not follow the low-level policy corresponding to the current objective and do not select a new target direction when exiting.

In the following proofs, we restrict our attention to proper policies.

Property 1 (High-level objective in the MDP plan). InMΠ, the high-level objective O translates to the reach-avoid objective O(T,B) where
T = {⟨s, v, u⟩ ∈ SΠ | v ∈ T} and B =

{
⟨s, v, u⟩ ∈ SΠ | s ̸∈ Bℓ(v)

}
for the high-level objective ♢T so that BR is the set to avoid in room

R.

E Proofs from Sect. 6
Lemma 3 (Equivalence of policies in the two-level model and plan). There exists an equivalence between planners with memory of size |V| in
the two-level modelH and proper deterministic stationary policies in the MDP planMΠ that preserves the values of their respective objective
under equivalent planners and policies.

Proof. Let τ be a planner for H with memory of size |V|. Let us encode τ as a finite Mealy machine whose inputs are graph vertices V and
outputs are directions, i.e., τ = ⟨Q, τa, τu, q0⟩ whereQ is a set of memory states with |Q| = |V|, τa : V ×Q → E is the next action function,
τu : V ×Q× E → Q is the memory update function, and q0 is the initial memory state.

Let us consider the high-level controller ⟨τ,Π⟩ as a policy in the explicit MDPM. Since τ is a planner, we require that

1. τa(v0, q0) = d1, and
2. if τa(v, q) = d, then d ∈ out(v) for any v ∈ V, q ∈ Q.

Intuitively, τa chooses the direction to follow in the current room based on the current memory state q, and τu describes how to update the
memory, based on the current room, the current memory state, and the direction chosen. By definition of the high-level controller ⟨τ,Π⟩ (see
Sect. 4), τa is used at each time step in the current room, to know which low-level policy to execute, and τu is triggered once an exit state is
reached, to switch to the next memory state that will determine the direction to follow in the next room.

Then, PrM⟨τ,Π⟩ is a distribution over the product of the paths ofM and the sequence of memory states of τ . Following the definition of the con-
troller ⟨τ,Π⟩ (cf. Sect. 4), the measure PrM⟨τ,Π⟩ can be obtained inductively as follows. For a state ⟨s, v⟩ ∈ S, PrM⟨τ,Π⟩(s, v, q) = Iℓ(v0)(s | d0)
if v0 = v and q = q0, and assigns a zero probability otherwise. The probability of a path ρ = s0, v0, q0, . . . , st−1, vt−1, qt−1, st, vt, qt is
given as follows

(a) if st−1 is not an exit state, the low-level policy is executed in direction d = τa(vt−1, qt−1) and both the current vertex and memory state
must remain unchanged:

PrM⟨τ,Π⟩(s0, v0, q0, . . . , st−1, vt−1, qt−1) · Ea∼πℓ(vt),d
(·|s)P(⟨st, vt⟩ | ⟨st−1, vt−1⟩, a)

if st−1 ̸∈ Oℓ(vt−1)(d) with d = τa(vt−1, qt−1), vt = vt−1, and qt = qt−1;
(b) if st−1 is an exit state in the direction prescribed in qt−1, then this direction should point to vt and the memory state must be updated to qt:

PrM⟨τ,Π⟩(s0, v0, q0, . . . , st−1, vt−1, qt−1) · Iℓ(vt)(st | d)

if st−1 ∈ Oℓ(vt−1)(d) with d = τa(vt−1, qt−1) = ⟨vt−1, vt⟩, and qt = τu(vt−1, qt−1, d);
(c) if st−1 is the reset state, by Assumptions 1 and 3, the planner must be reset as well:

PrM⟨τ,Π⟩(s0, v0, q0, . . . , st−1, vt−1, qt−1) · Iℓ(v0)(st | d0)

if st−1 = sreset, vt = v0, and qt = q0;
(d) zero otherwise.

Notice that renaming Q to V so that for all q ∈ Q, q is changed to u ∈ V (i.e., q 7→ u) whenever τa(v, q) = ⟨v, u⟩ is harmless, since the
probability measure remains unchanged. From now on, we consider thatQ has been renamed to V in this manner.

Now, define the relation ≡ between planners inM and policies inMΠ as2

τ ≡ π if and only if

π(⟨s, v, u⟩) =

{
τa(u, ·) ◦ τu(v, u, d = ·) ◦ τa(v, u) if s ∈ Oℓ(v)(⟨v, u⟩)
∗ otherwise.

2 Notice the slight asymmetry induced by Mealy machines: while the policy must decide the next direction in exit states, the planner just need update its memory
state (Eq. (b)).

By construction ofMΠ, modulo the renaming of Q to V , PrM⟨τ,Π⟩ = PrMΠ
π for any τ , π in relation τ ≡ π: condition (i) is equivalent to (a),

condition (ii) is equivalent to (b), and condition (iii) is equivalent to (c). Note that the only policies π which cannot be in relation with some
planner τ are improper policies, i.e., those choosing actions leading to the sink state ⊥ (see condition (iv)). Such policies are discarded by
assumption.

The result follows from the fact that, modulo the renaming of Q to V , planners and policies in relation ≡ lead to the same probability
space.

Theorem 6. For a fixed collection of low-level policies Π, a memory of size |V| is necessary and sufficient for the planner to maximize the
values of O in the two-level modelH.

Proof. The necessity of a memory of size |V| is shown in Example 2. The sufficiency follows from Thm. 3 and the fact that a deterministic
stationary policy is sufficient to maximize constrained, discounted reachability objectives in MDPs [49, 9] (in particular inMΠ).

To see how, let π∗ be a proper optimal deterministic stationary policy inMΠ. Note that one can always find a proper optimal policy from
an improper one: if π∗ is improper, it is necessarily because a prohibited action has been chosen after having reached the target, which can be
replaced by any other action without changing the value of the objective. Consider a planner τ in the two-level model H which is equivalent
to π∗ (Lem. 3). Then, τ is optimal for the high-level objective in H (since the probability space of the two models is the same), and τ uses a
memory of size |V|.

Succinct MDP. In the following, we take a closer look at the construction of the succinct MDPMG
Π. We then prove Thm. 4.

Explicitly, the transition function can be re-formalized as follows. Let v, u ∈ V , d ∈ E, and d′ ∈ E ∪ {⊥}, P defined as

P
(
d′ | ⟨v, u⟩, d

)
=

Es∼Iℓ(u)(·|⟨v,u⟩) V
πℓ(u),d(s) if d = d′ ∈ out(u),

1−P(d | ⟨v, u⟩, d) if d′ = ⊥ and d ∈ out(u),
1 if d′ = ⊥ and d ̸∈ out(u), and
0 otherwise,

(7)

while P(⊥ | ⊥, d) = 1.
We illustrate the idea behind the construction of P via the following example.

Example 3 (Composed trajectories). Consider the explicit model of Fig. 3(a), which we project on two dimensions in Fig. 9.

Each directed arrow corresponds to a transition with a non-zero prob-
ability. A state of the form ⟨s, v⟩ indicates that the agent is in state s
of room ℓ(v). Consider a trajectory τ that enters ℓ(v0) = R0, exits
after i = 3 steps (s0 → s1 → s2

aexit−−→), enters ℓ(u) = R1, exits
after j = 3 steps (s0 → s1 → s2

aexit−−→), and finally reaches the high-
level goal.

s2, v0

s0, v0 s1, v0

s3, v0

s2, us1, u

s3, us0, u
aexit

R0 R1

aexit goal

Figure 9: Projection of Fig. 3(a) on two dimensions

The prefix of τ in R0 is discounted to γ3 when the agent exits. Similarly, the suffix of τ in R1 is discounted to γ3. Once in the goal, the agent
gets a “reward" of one (the goal is reached). The discounted reward of τ is thus γi+j = γ6. In expectation, this corresponds to multiplying the
values in the individual rooms and, in turn, with the semantics ofMG

Π where probabilities are multiplied along a trajectory.

For convenience, in the following, we assume that sreset ∈ BR for each room R, which is consistent with the remark made in Appendix A.
The construction ofMG

Π and Theorem 4 can be generalized by additionally wisely handling the reset state in P.
For the sake of clarity, we formally restate Thm. 4:

Theorem 7 (Value equality in the succinct model). Let ⟨τ,Π⟩ be a hierarchical controller for H with a |V|-memory planner τ . Denote by
V π
MΠ

(O) the initial value ofMΠ running under a policy π equivalent3 to τ inMΠ for the reach-avoid objective O of Property 1. Moreover,
denote by V τ

MG
Π
(♢T) the initial value obtained inMG

Π when the agent follows the decisions of τ for the reachability objective to states of the

set V × T — i.e., the reach-avoid objective O(V × T, ∅). Then, assuming v0 ̸∈ T (the case where v0 ∈ T is trivial),

V π
MΠ

(O) = V τ
MG

Π
(♢T).

Proof. Given any MDPM = ⟨S,A,P, I⟩, we start by recalling the definition of the value function of any reach-avoid objective of the form
O(T,B) with T,B ⊆ S for a discount factor γ ∈ (0, 1) and a policy π:

V π
I (O) = Eρ∼PrMπ

[
sup
i≥0

γi
1 {si ∈ T} · 1 {∀j ≤ i, sj ̸∈ B}

]
, (8)

where si denotes the ith state of ρ. Intuitively, this corresponds to the expected value of the discount scaled to the time step of the first visit of
the set T , ensuring that the set of bad states B is not encountered before this first visit.

3 cf. Lemma 3.

First, notice that the reach-avoid property can be merely reduced to a simple reachability property by making absorbing the states of B [9].
Precisely, writeM ⟳B for the MDPM where we make all states from B absorbing, i.e., where P is modified so that P(s | s, a) = 1 for any
s ∈ B and a ∈ A. Then, one can get rid of the indicator 1 {∀j ≤ i, sj ̸∈ B} in Eq. 8 by considering infinite paths ofM ⟳B :

V π
I (O) = Eρ∼PrMπ

[
sup
i≥0

γi
1 {si ∈ T} · 1 {∀j ≤ i, sj ̸∈ B}

]
= E

ρ∼PrM ⟳B
π

[
sup
i≥0

γi
1 {si ∈ T}

]
.

Second, define
Paths fin

♢T = {ρ = s0, s1, . . . , si | si ∈ T and sj ̸∈ T for all j < t}

as the set of finite paths that end up in T , with T being visited for the first time. Then, on can get rid of the supremum of Eq. 8 follows:

V π
I (O) = E

ρ∼PrM ⟳B
π

[
sup
i≥0

γi
1 {si ∈ T}

]

= E
ρ∼PrM ⟳B

π

[
∞∑
t=0

γt · 1
{

pref (ρ, t) ∈ Paths fin
♢T

}]
, (9)

where pref (ρ, t) = s0, s1, . . . , st yields the prefix of ρ = s0, s1, . . . which ends up in the tth state st. The attentive reader may have noticed
that the resulting expectation can be seen as the expectation of a discounted cumulative reward signal (or a discounted return, for short), where
a reward of one is incurred when visiting T for the first time. Taking it a step further, define the reward function

rew
(
s, a, s′

)
=

{
1− γ if s ∈ T, and
0 otherwise.

Then, the value function can be re-written as

V π
I (O) = E

ρ∼PrM ⟳B
π

[
∞∑
t=0

γt · 1
{

pref (ρ, t) ∈ Paths fin
♢T

}]

= E
ρ∼PrM ⟳T∪B

π

[
∞∑
t=0

γt · rt

]
.

For any state s ∈ T , notice that since T is absorbing inM ⟳T∪B ,

V π(s,O) = 1. (10)

It is folklore that the discounted return is the solution of the Bellman equation V π(s,O) = γEa∼π(·|s)Es′∼P(·|s,a) [rew(s, a, s′) · V π(s′,O)]
for any s ∈ S [49]. In particular, considering the reach-avoid objective O, we have by Eq. 10

V π(s,O) =

γEa∼π(·|s)Es′∼P(·|s,a) [V

π(s′,O)] if s /∈ T ∪B,

1 if s ∈ T \B, and
0 otherwise, when s ∈ B.

Now, let us consider the values of the MDP plan MΠ for the reach-avoid objective O(T,B) where T = {⟨s, v, u⟩ | v ∈ T} and B ={
⟨s, v, u⟩ | s ̸∈ Bℓ(v)

}
for the high-level objective ♢T and set of low-level objectives

{
Od

R : R ∈ R, d ∈ DR

}
so that BR is the set of states

to avoid in room R. Fix a |V|-memory high-level controller π = ⟨τ,Π⟩ in for two-level model H (which is compliant withMΠ, see Thm. 3
and the related proof). We take a close look to the value of each state inMΠ by following the same structure as we used for the definition
of MΠ (cf. Sect. 6). For the sake of presentation, given any pair of vertices v, u ∈ V , we may note ⟨sreset, v, u⟩ to refer to the (unified,
cf. Assumption 3) reset state sreset ∈ SΠ. Given a state ⟨s, v, u⟩ ∈ SΠ with direction d = ⟨v, u⟩,

(i) if s is not an exit state, i.e., if s ̸∈ Oℓ(v)(d), then

V π(⟨s, v, u⟩,O)

=γE⟨s′,v,u⟩∼PΠ(·|⟨s,v,u⟩,∗)
[
V π(⟨s′, v, u⟩,O)] (by Eq. 5)

=γ
∑

s′∈Sℓ(v)

PΠ

(
⟨s′, v, u⟩ | ⟨s, v, u⟩, ∗

)
· V π(⟨s′, v, u⟩,O)

=γ
∑

s′∈Sℓ(v)

∑
a∈Aℓ(v)

πℓ(v),d(a | s) ·Pℓ(v)

(
s′ | s, a

)
· V π(⟨s′, v, u⟩,O);

(ii) if s is an exit state in the direction d, i.e., s ∈ Oℓ(v)(d), given the direction chosen by the planner d′ = τ(v, u) = ⟨u, t⟩ for some neihbor
t ∈ N(u), we have

V π(⟨s, v, u⟩,O)

=γE⟨s′,u,t⟩∼PΠ(·|⟨s,v,u⟩,d′)
[
V π(⟨s′, u, t⟩,O)]

=γEs′∼Iℓ(u)(·|d)
[
V π(⟨s′, u, t⟩,O)] (by Eq. 6)

=γ
∑

s′∈Sℓ(u)

Iℓ(u)
(
s′ | d

)
· V π(⟨s′, u, t⟩,O); (11)

(iii) if v is the target, i.e., v ∈ T , V π(s,O) = 1; and
(iv) otherwise, when s is a bad state, i.e., s ∈ Bℓ(v), V π(s,O) = 0.

Take R = ℓ(v). By (i) and (ii), when s is not an exit state, i.e., s ̸∈ Oℓ(v)(d), we have

V π(⟨s, v, u⟩,O) =
∑

s0,s1,...,si∈Path fin
Od
R

γiPrRs
πR,d

(s0, s1, . . . , si) · V π(⟨si, v, u⟩,O),

so that
Path fin

Od
R

= Path fin
♢OR(d) \ {ρ = s0, s1, . . . , sn | ∃1 ≤ i ≤ n, si ∈ BR} ,

where we denote by Rs the room R where we change the initial distribution by the Dirac IR(s0) = 1 {s0 = s}, and PrRs
πR,d

is the distribution
over paths of R which start in state s which is induced by the choices of the low-level latent policy πR,d.

Following Eq. 11, notice that V π(⟨sexit, v, u⟩,O) = V π(⟨s′exit, v, u⟩,O) for any sexit, s
′
exit ∈ OR(d = ⟨v, u⟩): the probability of going to

the next room R′ = ℓ(u) from an exit state of the current room R only depends on the entrance function IR′ and is independent from the
exact exit state which allowed to leave the current room R. Therefore, we further denote by V π(⟨·, v, u⟩,O) the value of any exit state of R in
direction d, i.e., V π(⟨·, v, u⟩,O) = V π(⟨sexit, v, u⟩,O) for all sexit ∈ OR(d). Then, we have

V π(⟨s, v, u⟩,O)

=
∑

s0,s1,...,si∈Path fin
OR
d

γiPrRs
πR,d

(s0, s1, . . . , si) · V π(⟨si, v, u⟩,O)

=
∑

s0,s1,...,si∈Path fin
Od
R

γiPrRs
πR,d

(s0, s1, . . . , si) · V π(⟨·, v, u⟩,O)

=V π(⟨·, v, u⟩,O) ·
∑

s0,s1,...,si∈Path fin
Od
R

γiPrRs
πR,d

(s0, s1, . . . , si)

=V π(⟨·, v, u⟩,O) · V πd,R(s, γ), (by Eq. 9)

where V πR,d(s, γ) denotes the value of the reach-avoid objective Od
R = O(OR(d), BR) in the room R from state s ∈ R. Then, by (ii),

assuming v ̸∈ G, we have

1. if u ̸∈ G,

V π(⟨·, v, u⟩,O)

=γ ·
∑

s′∈Sℓ(u)

Iℓ(u)
(
s′ | d = ⟨v, u⟩

)
· V π(⟨s′, τ(v, u)⟩,O) (12)

=γ ·
∑

s′∈Sℓ(u)

Iℓ(u)
(
s′ | d = ⟨v, u⟩

)
· V πℓ(u),τ(v,u)

(
s,Od

R

)
· V π(⟨·, τ(v · u)⟩,O)

=γ ·P(τ(v, u) | ⟨v, u⟩, τ(v, u)) · V π(⟨·, τ(v · u)⟩,O) (where P is the transition function ofMG
Π, see Eq. 2)

2. if u ∈ G,

V π(⟨·, v, u⟩,O)

=γ ·
∑

s′∈Sℓ(u)

Iℓ(u)
(
s′ | d = ⟨v, u⟩

)
· V π(⟨s′, τ(v, u)⟩,O)

=γ ·
∑

s′∈Sℓ(u)

Iℓ(u)
(
s′ | d = ⟨v, u⟩

)
· 1 (since τ(v, u) = ⟨u, t⟩ for some t ∈ N(u))

=γ.

Now, respectively denote by V π
MΠ

(·,O) := V π(·,O) and V τ
MG

Π
(·,♢T) the value functions ofMΠ andMG

Π for the objectives O and ♢T .

By 1 and 2, and by construction ofMG
Π, we have for any pair of vertices v, u ∈ V that

V π
MΠ

(⟨·, v, u⟩,O) = γ · V τ
MG

Π
(⟨v, u⟩,♢T),

On the one hand, notice that, by construction of MG
Π, we have for any pair of vertices ⟨v, u⟩ ∈ E that the initial values V τ

MG
Π
(♢T) are

Ed∼I V
τ
MG

Π
(d,♢T) = V τ

MG
Π
(d0,♢T). On the other hand, we have

V π
MΠ

(O) = Es′∼Iℓ(v0)(·|d0) V
π
MΠ

(
⟨s′, τ(d0)⟩,O

)
= 1/γ · V π

MΠ
(·, d0,O). (by Eq. 12)

Then, we finally have:
V π
MΠ

(O) = 1/γ · V π
MΠ

(·, d0,O) = γ/γ · V τ
MG

Π
(d0,♢T) = V τ

MG
Π
(♢T),

which concludes the proof.

F Initial Distribution Shifts: Training vs. Synthesis
Our high-level controller construction occurs in two phases. First, we create a set of low-level policies Π by running Algorithm 1 in each
room (Sect. 5.3). Notably, training in each room is independent and can be executed in parallel. However, independent training introduces a
challenge: an initial distribution shift emerges when combining low-level policies using a planner. Our value bounds for a room R in direction
d depend on a loss LR,d

P , computed based on the stationary distribution. This distribution may significantly change depending on a planner’s
choices. In this section, we address this challenge by showing, under mild assumptions on the initial distribution of each room R, that their
transition losses LR,d

P obtained under any latent policy πR,d for direction d still guarantee to bound the gap between the values of the original
and latent two-level models.

Training rooms. To construct Π, we train low-level policies via Algorithm 1 by simulating each room individually. Precisely, for room
R ∈ R and direction d ∈ DR, we train a WAE-DQN agent by considering R as episodic MDP with some initial distribution IR, yielding
(i) low-level latent policy πR,d, (ii) latent MDPMR, and (iii) state-embedding function ϕR. Since πR,d must learn to maximize the values
of the objective Od

R, which asks to reach the exit state in direction d, we restart the simulation when the latter is visited. Formally, the
related training room is an episodic MDP Rd = ⟨SR,AR,P

d
R, IR⟩, where sreset ∈ SR, Pd

R(· | s, a) = PR(· | s, a) when s ̸∈ OR(d), and
Pd

R(sreset | s, a) = 1 otherwise. We define Pd
R similarly forMR when the direction d is considered.

Distribution shift. Crucially, by considering rooms individually, a noticeable initial distribution shift occurs when switching between training
and synthesis phases. During training, there is no high-level controller, so the initial distribution of room R is just IR. During synthesis, room
entries and exits are determined by the distributions influenced by the choices made by the controller in the hierarchical MDPH. This implies
that the induced initial distribution of each room depends on the likelihood of visiting other rooms and is further influenced by the other
low-level policies.

We contend that this shift may induce significant consequences: denote by LR,d
P the transition loss of the room Rd operating under πR,d

and by Lτ,Π
P the transition loss of the two-level modelH operating under ⟨τ,Π⟩. Then, in the worst case, Lτ,Π

P and LR,d
P might be completely

unrelated whatever the room R and direction d. To see why, recall that transition losses are defined over stationary distributions of the respective
models (Eq. 1). One can see this shift as a perturbation in the transition function of the rooms. Intuitively, by Assumption 1, each room is almost
surely entered infinitely often, meaning that such perturbations are also repeated infinitely often, possibly leading to completely divergent
stationary distributions [46], meaning that we loose the abstraction quality guarantees possibly obtained for each individual training room.

Entrance loss. Fortunately, we claim that under some assumptions, when the initial distribution of each training room IR is wisely chosen,
we can still link the transition losses LR,d

P minimized in the training rooms to Lτ,Π
P . To provide this guarantee, the sole remaining missing

component to our framework is learning a latent entrance function: we define the entrance loss as

LI = ER,d∼ξπ D
(
ϕIR(· | d), IR(· | d)

)
, (13)

where ϕIR(· | d) = Es∼IR(·|d) 1 {s = ϕR(s)}, IR : DR → ∆
(
S
)

is the latent entrance function, π is the stationary policy inMΠ corre-
sponding to the high-level controller ⟨τ,Π⟩ where τ has a memory of size |V|, D is total variation, and and ξπ is the stationary distribution
induced by π inMΠ. The measure ξπ can also be seen as a distribution over rooms and directions chosen under the controller:4

ξπ(R, d) = Es,v,u∼ξπ [1 {s = sreset, R = ℓ(v), d = d0}+ 1 {R = ℓ(v), d = ⟨v, u⟩}] .

Theorem 8 (Reusable RL components). Let ⟨τ,Π⟩ be a high-level controller in H where τ has finite memory of size |V| and let π be the
equivalent stationary policy in the MDP planMΠ. Assume (i) Π only consists of latent policies and (ii) for any training room R ∈ R and
direction d ∈ DR, the projection5of the BSCC ofMΠ under π to SR is included in the BSCC of Rd under low-level policy πR,d. Let

SR,d = {⟨s, v, u⟩ ∈ SΠ | ℓ(v) = R and ⟨v, u⟩ = d} ,
ξπ(sreset | R, d) = E⟨s,v,u⟩,a∼ξπ [PΠ(sreset | ⟨s, v, u⟩, a) | SR,d] , and

ξmin
continue = 1− max

R∈R,d∈D
(ξπ(sreset | SR,d) + ξπ(OR(d)× {d} | SR,d)).

4 For simplicity, we consider here the special state ⟨sreset, v, v0⟩ with ⟨v, v0⟩ = d0 as the joint reset state of the model (Assumption 3).
5 Formally speaking, this is the projection to SR of the intersection of the BSCC of MΠ operating under π with SR ×DR.

Then, there is a κ ≥ 0 with Lτ,Π
P ≤ LI + κ

ξmin
continue

ER,d∼ξπ LR,d
P . Define the expected entrance function in room R as IπR(s) =

Eṡ,⟨u,v⟩∼ξπ

[
IR(s | d = ⟨u, v⟩) | ṡ ∈ Oℓ(u)(⟨u, v⟩) and ℓ(v) = R

]
for any s ∈ SR. With supp(P) = {x ∈ X | P (x) > 0} the support

of distribution P , if supp(IR) = supp(IπR), κ can be set to the maximum probability ratio of room entry during training and synthesis:

κ = max
R∈R

(
max

s∈supp(IR)
max

{
IπR(s)

IR(s)
,
IR(s)

IπR(s)

})|S|

.

Proof. For simplicity, assume that the reset state in SΠ is a triplet of the form ⟨sreset, v, v0⟩ so that ⟨v, v0⟩ = d0 and Oℓ(vreset)(d0) = {sreset}.
We also may write ϕ(s) for ϕR(s) when it is clear from the context that s ∈ SR. We respectively denote the marginal stationary distribution
of states and directions by ξπ(s) = Es′,v,u∼ξπ [1 {s = s′}] and ξπ(d) = Es,v,u∼ξπ [1 {d = ⟨v, u⟩}]. Furthermore, given a direction d ∈ E,
we denote the conditional stationary distribution by

ξπ(s, a | d) = Es′,v,u∼ξπ

[
πℓ(v),d(a | ϕ(s)) · 1

{
s = s′

}
|
{
⟨s′, v, u⟩ ∈ SΠ | ⟨v, u⟩ = d

}]
= Es′,v,u∼ξπ

[
πℓ(v),d(a | ϕ(s)) · 1

{
s = s′

} 1 {d = ⟨v, u⟩}
ξπ(v, u)

]
In the following, we also write P(s′ | s, a) as shorthand for P(⟨s′, v⟩ | ⟨s, v⟩, a) (the transition function of the explicit MDP of H) if and
only if s, s′ ∈ Sℓ(v) and s ̸∈ Oℓ(v)(d) for some v ∈ V , d ∈ out(v). Denote by PΠ the latent transition function of the latent MDP planMΠ,
constructed from the collection of low-level policies Π, the latent rooms

{
MR : R ∈ R

}
, and the latent entrance functions

{
IR : R ∈ R

}
.

Then:

Lτ,Π
P

=
1

2
E⟨s,v,u⟩,a∼ξπ

∥∥ϕPΠ(· | ⟨s, v, u⟩, a)−PΠ(· | ⟨ϕ(s), v, u⟩, a)
∥∥
1

=
1

2
Es,v,u∼ξπ

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥ϕPΠ(· | ⟨s, v, u⟩, ∗)−PΠ(· | ⟨ϕ(s), v, u⟩, ∗)
∥∥
1

]

+
1

2
E⟨s,v,u⟩,d′∼ξπ

[
1 {s ̸= sreset} 1

{
s ∈ Oℓ(v)(⟨v, u⟩)

}∥∥ϕPΠ

(
· | ⟨s, v, u⟩, d′

)
−PΠ

(
· | ⟨ϕ(s), v, u⟩, d′

)∥∥
1

]

+
1

2
Es,v,u∼ξπ

[
1 {s = sreset}

∥∥ϕPΠ(· | ⟨s, v, u⟩, ∗)−PΠ(· | ⟨ϕ(s), v, u⟩, ∗)
∥∥
1

]
(π is proper)

=
1

2
Es,v,u∼ξπ

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥∥∥Ea∼πℓ(v),⟨v,u⟩(·|ϕ(s))

[
ϕP(· | s, a)−P(· | ϕ(s), a)

]∥∥∥∥
1

]
(by definition ofMΠ (i))

+
1

2
E⟨s,v,u⟩,d′∼ξπ

[
1 {s ̸= sreset} 1

{
s ∈ Oℓ(v)(⟨v, u⟩)

}∥∥ϕIℓ(u)(· | ⟨v, u⟩)− Iℓ(u)(· | ⟨v, u⟩)∥∥1
]

(by definition ofMΠ (ii))

+
1

2
Es,v,u∼ξπ

[
1 {s = sreset}

∥∥ϕIℓ(v0)(· | d0)− Iℓ(v0)(· | d0)∥∥1] (by definition ofMΠ (iii))

=
1

2
Es,v,u∼ξπ

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥∥∥Ea∼πℓ(v),⟨v,u⟩(·|ϕ(s))

[
ϕP(· | s, a)−P(· | ϕ(s), a)

]∥∥∥∥
1

]
+

1

2
ER,d∼ξπ

∥∥ϕIR(· | d)− IR(· | d)∥∥1
=

1

2
Es,v,u∼ξπ

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥∥∥Ea∼πℓ(v),⟨v,u⟩(·|ϕ(s))

[
ϕP(· | s, a)−P(· | ϕ(s), a)

]∥∥∥∥
1

]
+ LI

≤ 1

2
Es,v,u∼ξπ Ea∼πℓ(v),⟨v,u⟩(·|ϕ(s))

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
+ LI (Jensen’s inequality)

=
1

2
Ed∼ξπ Es,a∼ξπ(·|d)

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(d)

} ∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
+ LI (⋆)

Now, let d = ⟨v, u⟩ ∈ E be a target direction for the room R = ℓ(v). We consider the room R as an episodic MDP (cf. Assumption 1) where
(i) the initial distribution corresponds to the expected entrance probabilities in R under π: for any s ∈ SR

IπR(s) = Eṡ,⟨u̇,v̇⟩∼ξπ

[
IR(s | dI = ⟨u̇, v̇⟩) | ṡ ∈ Oℓ(u̇)(⟨u̇, v̇⟩) and v̇ = v

]
(where dI is the direction from which R is entered); and (ii) the room is reset when an exit state in direction d is visited: for any s, s′ ∈ SR,
a ∈ AR,

Pd,π
R

(
s′ | s, a

)
=

1 if s′ = sreset and s ∈ OR(d),

IπR(s
′) if s = sreset, and

PR(s
′ | s, a) otherwise.

(14)

v

SR

sOd

S \ (SR × {v})

v

sreset

ξπ(· | d)

sOd

ξ
Rd,π
π̄R,d

SR

= ℓ−1(R)

Figure 10: Room R = ℓ(v) in the two-level model (left) and the same room taken individually (right). Both distributions ξπ(· | d) and
ξ
Rd,π

πR,d
correspond to the limiting distributions over SR when πR,d is executed in R. The sole difference remains in the fact that the reset is

considered outside R in the two-level model (Assumption 3) while it is considered to be part of the state space when R is taken individually
(Assumption 1).

We call the resulting MDP the individual room version of R that we denote by Rd,π . The stationary distribution of the room Rd,π for the
low-level policy πR,d is ξ

Rd,π

πR,d
. Observe that ξ

Rd,π

πR,d
is over SR, which includes the reset state sreset, while ξπ(· | d) is over the exact same

state space but without the reset state (since the reset state is a special state outside R, shared by all the rooms in the two-level model; cf.
Assumption 3 and the definition ofMΠ). Furthermore, notice that, modulo this reset state, the two distributions are the same (see Fig. 10):
they both consist of the limiting distribution over SR when πR,d is executed in R. All the transition distributions remain the same, except those
of the exit states: in the two-level model H, every state s ∈ OR(d = ⟨v, u⟩) transitions to u deterministically, while in the individual room
Rd,π , they transition to the reset state deterministically. Still, in both cases, R is entered and exited with the same probability (respectively
from and to (S \ SR × {v}) inH and sreset in the individual room Rd,π). Therefore, we have:

ξπ(s | d) = ξ
Rd,π

πR,d
(s | SR \ {sreset}) =

ξ
Rd,π

πR,d
(s) · 1 {s ̸= sreset}

1− ξ
Rd,π

πR,d
(sreset)

. (15)

Instead of sampling from ξπ(s | d) in Eq. ⋆, we would rather like to sample from the distribution of the individual room
ξ
Rd,π

πR,d
(s | SR \ {sreset}). We have:

Es,a∼ξπ(·|d)
[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(d)

}∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
=
∑
s∈S

∑
a∈A

[ξπ(s | d)πR,d(a | ϕ(s)) 1 {s ̸= sreset} 1
{
s ̸∈ Oℓ(v)(d)

} ∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
(16)

=
∑
s∈S

∑
a∈A

ξRd,π

πR,d
(s)1 {s ̸= sreset}

1− ξ
Rd,π

πR,d
(sreset)

πR,d(a | ϕ(s)) 1 {s ̸= sreset} 1
{
s ̸∈ Oℓ(v)(d)

} ∥∥ϕPR(· | s, a)−PR(· | ϕ(s), a)
∥∥
1

]
(17)

= E
s,a∼ξ

Rd,π
πR,d

 1 {s ̸= sreset}
1− ξ

Rd,π

πR,d
(sreset)

1
{
s ̸∈ Oℓ(v)(d)

}∥∥ϕPR(· | s, a)−PR(· | ϕ(s), a)
∥∥
1

Notice that we can pass from Eq. 16 to (17) because we only consider states s ̸= sreset and s ̸∈ Oℓ(v)(d). States that do not satisfy both
constraints are the only ones for which P(· | s, a) differs from Pd,π

R (· | s, a) (Eq. 14). Furthermore, in that case, we have Pd,π
R (· | s, a) =

PR(· | s, a). Then we have:

E
s,a∼ξ

Rd,π
πR,d

 1 {s ̸= sreset}
1− ξ

Rd,π

πR,d
(sreset)

1
{
s ̸∈ Oℓ(v)(d)

}∥∥ϕPR(· | s, a)−PR(· | ϕ(s), a)
∥∥
1

= E

s,a∼ξ
Rd,π
πR,d

 1 {s ̸= sreset}
1− ξ

Rd,π

πR,d
(sreset)

∥∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥∥
1

 (by definition of Pd
R and Pd

R)

=
1

1− ξ
Rd,π

πR,d
(sreset)

E
s,a∼ξ

Rd,π
πR,d

[
1 {s ̸= sreset}

∥∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥∥
1

]
≤ 1

1− ξ
Rd,π

πR,d
(sreset)

E
s,a∼ξ

Rd,π
πR,d

∥∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥∥
1

Assuming that the projection of the BSCC ofMΠ under π to SR is included in the BSCC of R when it operates under πR,d, we have that

supp
(
ξ
Rd,π

πR,d

)
⊆ supp

(
ξRπR,d

)
, where ξRπR,d

denotes the stationary distribution of the training room Rd under the latent policy πR,d. Then:

1

1− ξ
Rd,π

πR,d
(sreset)

E
s,a∼ξ

Rd,π
πR,d

∥∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥∥
1

=
1

1− ξ
Rd,π

πR,d
(sreset)

∑
s∈supp

(
ξ
Rd,π
πR,d

)
∑

a∈AR

[
ξ
Rd,π

πR,d
(s)πR,d(a | ϕ(s))

∥∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥∥
1

]

=
1

1− ξ
Rd,π

πR,d
(sreset)

∑
s∈supp

(
ξRπR,d

)
∑

a∈AR

ξRd,π

πR,d
(s)

ξRπR,d
(s)

ξRπR,d
(s)πR,d(a | ϕ(s))

∥∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥∥
1

]

=
1

1− ξ
Rd,π

πR,d
(sreset)

Es,a∼ξRπR,d

ξRd,π

πR,d
(s)

ξRπR,d
(s)

∥∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥∥
1

≤ 1

1− ξ
Rd,π

πR,d
(sreset)

Es,a∼ξRπR,d

 max
s′∈supp

(
ξRπR,d

)
ξ

Rd,π

πR,d
(s′)

ξRπR,d
(s′)

 ∥∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥∥
1

]

=
1

1− ξ
Rd,π

πR,d
(sreset)

max
s∈supp

(
ξRπR,d

)
ξ

Rd,π

πR,d
(s)

ξRπR,d
(s)

Es,a∼ξRπR,d

[∥∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥∥
1

]

= max
s∈supp

(
ξRπR,d

)
ξ

Rd,π

πR,d
(s)

ξRπR,d
(s)

 2LR,d
P

1− ξ
Rd,π

πR,d
(sreset)

If the initial distributions of the individual room Rd,π and the training room Rd have the same support, then the projection and the BSCCs
coincide since the same set of states is eventually visited under π from states of supp(IR) = supp(IπR). Furthermore, by [46, Thm. 1], we have

max
s∈supp

(
ξRπR,d

)
ξ

Rd,π

πR,d
(s)

ξRπR,d
(s)

 (18)

≤ max
s∈supp

(
ξRπR,d

)max

ξ
Rd,π

πR,d
(s)

ξRπR,d
(s)

,
ξRπR,d

(s)

ξ
Rd,π

πR,d
(s)

≤
(

max
s∈supp(IR)

max

{
IπR(s)

IR(s)
,
IR(s)

IπR(s)

})|S|

(cf. Eq. 14)

= κR,d; (19)

otherwise, we set κR,d to max
s∈supp

(
ξRπR,d

)
(

ξ
Rd,π
πR,d

(s)

ξRπR,d
(s)

)
. Moreover, let SR,d = {⟨s, v, u⟩ ∈ SΠ | ℓ(v) = R and ⟨v, u⟩ = d} and define

ξπ(sreset | R, d) = E⟨s,v,u⟩,a∼ξπ [PΠ(sreset | ⟨s, v, u⟩, a) | SR,d] .

Notice that

ξ
Rd,π

πR,d
(sreset) = E⟨s,v,u⟩,a∼ξπ [PΠ(sreset | ⟨s, v, u⟩, a) + 1 {s ∈ OR(d)} | SR,d]

= ξπ(sreset | R, d) + ξπ(OR(d)× {d} | SR,d)

by (i) the stationary property, (ii) definition of Pd,π
R (cf. Eq. 14 and Fig. 10), (iii) the fact that the probability of exiting the room is equal to the

probability of visiting an exit state, and (iv) the fact that resetting the room and visiting an exit state are disjoint events (when an exit state is
visited, it always transitions to the next room, never to the reset state).

By putting all together, we have

Lτ,Π
P

≤ LI +
1

2
Ed∼ξπ Es,a∼ξπ(·|d)

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(d)

} ∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
≤ LI + ER,d∼ξπ

κR,dL
R,d
P

1− ξ
Rd,π

πR,d
(sreset)

= LI + ER,d∼ξπ

κR,dL
R,d
P

1− ξπ(sreset | R, d)− ξπ(OR(d)× {d} | SR,d)

≤ LI + ER,d∼ξπ

max {κR⋆,d⋆ : R
⋆ ∈ R, d⋆ ∈ DR⋆} LR,d

P

1−maxR⋆∈R,d⋆∈DR(ξπ(sreset | R⋆, d⋆) + ξπ(OR⋆(d⋆)× {d⋆} | SR⋆,d⋆))

≤ LI +
κ

ξmin
continue

ER,d∼ξπ LR,d
P

where κ = max {κR⋆,d⋆ : R
⋆ ∈ R, d⋆ ∈ DR⋆} and

ξmin
continue = 1− max

R∈R,d∈DR

(ξπ(sreset | R, d) + ξπ(OR(d)× {d} | SR,d)). (20)

This concludes the proof.

Discussion. Assumption (ii) boils down to design an initial distribution for the simulator of each room that provides a sufficient coverage of
the state space: the latter should include the states likely to be seen when the room is entered under any planner. Then, if this initial distribution
is powerful enough to provide an exact coverage of the entrance states visited under the planner τ , the multiplier of the transition loss κ can be
determined solely based on the ratio of the initial distributions obtained during training and synthesis. We summarize the results as follows.

Theorem 9 (Value bound inH). Under the assumptions of Thm. 8,

∣∣V π
I − V π

I

∣∣ ≤ LI + κ/ξmin
continue ER,d∼ξπ LR,d

P

ξπ(sreset)(1−γ)
. (21)

G Experiments
In this section, we provide additional details on the experiments we performed.

Setup. Models have been trained on a cluster running under CentOS Linux 7 (Core) composed of a mix of nodes containing Intel
processors with the following CPU microarchitectures: (i) 10-core INTEL E5-2680v2, (ii) 14-core INTEL E5-2680v4, and (iii)
20-core INTEL Xeon Gold 6148. We used 8 cores and 42 GB of memory for each run during the hyperparameter search.

Environment. We provide additional details on the state space of our environment. The agent has LP life points, decrementing upon adversary
contact or timeout. Collecting power-ups (appearing randomly) shortly makes the agent invincible. The state space comprises two components:
(i) A 4-dimensional bitmap M ∈ {0, 1}N×l×m×n, where each layer in k ∈ {1, . . . , l} corresponds to an item type on the grid; entry MR,k,i,j

is 1 iff room R has item k in cell (i, j); (ii) step, power-up, and life-point counters ⟨a, b, c⟩. Figure 11 shows examples of rooms composed of
20× 20 cells.

agent

adversary

exit

goal

power-up

Figure 11: Two rooms of 20× 20 cells (9 rooms in Figure 13).6

6 Demonstration with 9 rooms: https://youtu.be/crowN8-GaRg

https://youtu.be/crowN8-GaRg

(a) Goal reached (average over 30 episodes). (b) Failures: adversaries hit (averaged over 30 episodes).
Figure 12: A more detailed version of Figure 7, where the WAE-DQN performance is specified per direction. We train five different instances
of the algorithm per policy with different random seeds, where the solid line corresponds to the mean and the shaded interval to the standard
deviation. To train the DQN agent, we set a time limit five times longer than that used for training rooms with the WAE-DQN agents. Note that
the DQN agent is equipped with 3 life points, while the WAE-DQN agents are limited to one.

DRL components. We use CNNs [39] to process bitmaps M and a sparse reward signal rew(s, a, s′) = r∗ · 1 {s ∈ T} − r∗ · 1 {s ∈ B},
where r∗ > 0 is an arbitrary reward (or conversely, a penalty) obtained upon reaching the target T (or an undesirable state in B). To
guide the agent, we add a potential-based reward shaping [45, 62] based on the L1 distance to the target. The resulting reward function is
rewΦ(s, a, s

′) = γΦ(s′)− Φ(s) + rew(s, a, s′) where

Φ(s) = 1− min {|x(t1)− x(s)|+ |y(t2)− y(s)| : t1, t2 ∈ T}
N · (m+ n)

,

and x(s), y(s) respectively return the Euclidean coordinates along the horizontal and vertical axes corresponding to state s ∈ S. Intuitively,
|Φ(s)− 1| reflects the normalized distance of state s to the targets T . When the agent gets closer (resp. further) to T when executing an action,
the resulting reward is positive (resp. negative). Our DQN implementation uses state-of-the-art extensions and improvements from [29].
Nevertheless, as demonstrated in Fig. 7, while DQN reduces contact with adversaries, the two-level nature of the decisions required to reach a
target hinders learning the high-level objective.

Learning the low-level policies. We run WAE-DQN to learn the set of low-level policies Π along with their latent-space models. Recall the
representation quality guarantees of our algorithm (cf. Sect. 5.3): the same latent space can be used for rooms sharing similar features. For
instance, in an environment composed of 9 rooms with similar shapes, we only train one latent policy per exit direction {←,→, ↑, ↓} instead
of 9 · 4 = 36. For training in a room R, we let IR uniformly distribute the agent’s possible entry positions. Adversaries’ initial positions are
randomly set by IR but may vary according to the function IR in the high-level model (unknown at training time). Objectives Od

R specify
reaching the target exit while avoiding adversaries before the episode ends.

DQN and WAE-DQN experiments. We provide a more detailed version of Figure 7 in Figure 12, where the WAE-DQN performance is
specified per direction. Precisely, we trained five different instances of the algorithm per policy with different random seeds, where the solid
line is the mean and the shaded interval is the standard deviation. To train the DQN agent, we set a time limit five times longer than that used
for training rooms with the WAE-DQN agents. Furthermore, the DQN agent is equipped with 3 life points, while the WAE-DQN agents are
limited to one.

Synthesis. To estimate the latent entrance function, we explore the high-level environment through random execution of the low-level latent
policies. We further consider Masked Autoencoders (MADEs, [23]), which allow to learn complex distributions from a dataset. With the data
collected via this exploration, we train a MADE to learn IR for any room R. To learn those latent entrance functions, consistently with WAE-
MDPs, we use the same kind of MADE as the one introduced by [17] for estimating the probability of the latent transition function. We finally
construct MG

Π (cf. Sect. 6) and apply the synthesis procedure to obtain a high-level controller π = ⟨τ,Π⟩. Tab. 1 reports the values of π
obtained for various environment sizes.

Hyperparameter search. To train our WAE-DQN agent, we ran 4 environments in parallel per training instance and used a replay buffer
of capacity 7.5 · 105. We performed a grid search to find the best parameters for our WAE-DQN algorithm. Tab. 3 presents the range of
hyperparameters used. In particular, we found that prioritized experience replay [54] and a categorical Q-network [12] did not improve the
results in our environment significantly. We used a batch size of 128 for the WAE-MDP.

For synthesizing the high-level controller, we used the hyperparameters that worked the best for each specific direction. We used the same
parameters for the DQN training instances shown in Figure 7.

For the MADE modeling the latent entrance function, we used a dataset of size 25600, and the training was split into 100 epochs (i.e., the
model performed 100 passes through the entire dataset) with a learning rate of 10−3. We used a batch size of 32 or 64, and two hidden layers,
either with 64 or 128 neurons.

Figure 13: Environment for N = 9 rooms of 20× 20 cells. The agent is depicted in yellow (top left), adversaries in red, power-ups as cherries,
and the goal at the bottom right.

Table 3: Hyperparameter range used for (WAE-)DQN. Parameters in green worked best on average (for optimizing the average return). For
details about the WAE-MDP parameters, see [17].

Parameter Value

Common to DQN and WAE-DQN

Activation {ReLU, leaky ReLu,ELU, tanh, sigmoid}
Hidden layers per network {1, 2, 3}
Neurons per layer {128, 256, 512}
CNN filters (3 layers) {3 → 5 → 7, 3 → 3 → 3}
CNN kernels (3 layers) {32 → 64 → 16, 64 → 32 → 16}

DQN

Use Boltzmann exploration {Yes,No}
Boltzmann temperature {0.25, 0.10, 0.75, 1, 10, 100}
Use ϵ-greedy exploration (decay to ϵ = 0.1) {Yes,No}
Target update period {1, 250, 500, 1000}
Target update scale (α in Algorithm 1)

{
10−4, 5 · 10−4, 10−3, 5 · 10−3

}
Reward scaling {1, 10, 25, 100}
Learning rate

{
6.25 · 10−5, 10−4, 2.5 · 10−4, 10−3

}
Batch size {32, 64, 128}
Use double Q-networks [60] {Yes,No}

WAE-MDP

Latent state size (power of 2) {12, 13, 14, 15}
State embedding function temperature {1/3, 1/2, 2/3, 3/4, 0.99}
Transition function temperature {1/3, 1/2, 2/3, 3/4, 0.99}
Steady-state regularizer scale factor {10, 25, 50, 75}
Transition regularizer scale factor {10, 25, 50, 75}
Minimizer learning rate

{
10−4, 5 · 10−4, 10−3

}
Maximizer learning rate

{
10−4, 5 · 10−4, 10−3

}
State embedding function learning rate

{
10−4, 5 · 10−4, 10−3

}
critic updates {5, 10, 15}
State reconstruction function {L2, binary cross entropy (for M)}

H Broader Impact
Our work presents primarily theoretical and fundamental results, enhancing the reliability of RL solutions. Our claims are also illustrated
experimentally with an experimental environment (involving an agent moving within a grid world amid moving adversaries). Specifically,
our approach focuses on providing performance (“reach-”) and safety (“avoid”) guarantees with RL policies. We believe our work may have
positive societal impacts in the long-term, including (i) safety-critical applications: prevent failures (in, e.g., autonomous driving, healthcare,
robotics); (ii) trust and wide adoption: builds and improves confidence in RL solutions; (iii) avoiding harmful behavior: mitigates unintended,
risky actions; and (iv) performance compliance: check whether performance standard are met (e.g., in industry).

	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	Obtaining Low-Level Policies via DRL
	Quantifying the quality of the abstraction
	PAC estimates of the abstraction quality
	Obtaining latent policies during training

	Obtaining a Planner
	Experimental Evaluation
	Conclusion
	Remark about Episodic Processes and Ergodicity
	Proofs from Sect. 5
	WAE-DQN
	Explicit Construction of the MDP Plan
	Proofs from Sect. 6
	Initial Distribution Shifts: Training vs. Synthesis
	Experiments
	Broader Impact

